add multi-threading for pre-processing
This commit is contained in:
parent
336be37032
commit
844494eca9
156
dataset.py
156
dataset.py
@ -1,6 +1,7 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
import logging
|
import logging
|
||||||
import string
|
import string
|
||||||
|
from multiprocessing import Pool
|
||||||
|
|
||||||
import h5py
|
import h5py
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -29,48 +30,50 @@ encode_char = np.vectorize(encode_char)
|
|||||||
|
|
||||||
|
|
||||||
# TODO: refactor
|
# TODO: refactor
|
||||||
def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
def get_user_chunks(user_flow, window=10):
|
||||||
maxLengthInSeconds=300):
|
# TODO: what is maxLengthInSeconds for?!?
|
||||||
maxMilliSeconds = maxLengthInSeconds * 1000
|
# maxMilliSeconds = maxLengthInSeconds * 1000
|
||||||
outDomainLists = []
|
# domains = []
|
||||||
outDFFrames = []
|
# flows = []
|
||||||
if not overlapping:
|
# if not overlapping:
|
||||||
numBlocks = int(np.ceil(float(len(dataFrame)) / float(windowSize)))
|
# numBlocks = int(np.ceil(len(user_flow) / window))
|
||||||
userIDs = np.arange(len(dataFrame))
|
# userIDs = np.arange(len(user_flow))
|
||||||
for blockID in np.arange(numBlocks):
|
# for blockID in np.arange(numBlocks):
|
||||||
curIDs = userIDs[(blockID * windowSize):((blockID + 1) * windowSize)]
|
# curIDs = userIDs[(blockID * window):((blockID + 1) * window)]
|
||||||
# logger.info(curIDs)
|
# useData = user_flow.iloc[curIDs]
|
||||||
useData = dataFrame.iloc[curIDs]
|
# curDomains = useData['domain']
|
||||||
curDomains = useData['domain']
|
# if maxLengthInSeconds != -1:
|
||||||
if maxLengthInSeconds != -1:
|
# curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
||||||
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
# underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
||||||
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
# if len(underTimeOutIDs) != len(curIDs):
|
||||||
if len(underTimeOutIDs) != len(curIDs):
|
# curIDs = curIDs[underTimeOutIDs]
|
||||||
curIDs = curIDs[underTimeOutIDs]
|
# useData = user_flow.iloc[curIDs]
|
||||||
useData = dataFrame.iloc[curIDs]
|
# curDomains = useData['domain']
|
||||||
curDomains = useData['domain']
|
# domains.append(list(curDomains))
|
||||||
outDomainLists.append(list(curDomains))
|
# flows.append(useData)
|
||||||
outDFFrames.append(useData)
|
# else:
|
||||||
else:
|
# numBlocks = len(user_flow) + 1 - window
|
||||||
numBlocks = len(dataFrame) + 1 - windowSize
|
# userIDs = np.arange(len(user_flow))
|
||||||
userIDs = np.arange(len(dataFrame))
|
# for blockID in np.arange(numBlocks):
|
||||||
for blockID in np.arange(numBlocks):
|
# curIDs = userIDs[blockID:blockID + window]
|
||||||
curIDs = userIDs[blockID:blockID + windowSize]
|
# useData = user_flow.iloc[curIDs]
|
||||||
useData = dataFrame.iloc[curIDs]
|
# curDomains = useData['domain']
|
||||||
curDomains = useData['domain']
|
# if maxLengthInSeconds != -1:
|
||||||
if maxLengthInSeconds != -1:
|
# curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
||||||
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
# underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
||||||
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
# if len(underTimeOutIDs) != len(curIDs):
|
||||||
if len(underTimeOutIDs) != len(curIDs):
|
# curIDs = curIDs[underTimeOutIDs]
|
||||||
curIDs = curIDs[underTimeOutIDs]
|
# useData = user_flow.iloc[curIDs]
|
||||||
useData = dataFrame.iloc[curIDs]
|
# curDomains = useData['domain']
|
||||||
curDomains = useData['domain']
|
# domains.append(list(curDomains))
|
||||||
outDomainLists.append(list(curDomains))
|
# flows.append(useData)
|
||||||
outDFFrames.append(useData)
|
# if domains and len(domains[-1]) != window:
|
||||||
if len(outDomainLists[-1]) != windowSize:
|
# domains.pop(-1)
|
||||||
outDomainLists.pop(-1)
|
# flows.pop(-1)
|
||||||
outDFFrames.pop(-1)
|
# return domains, flows
|
||||||
return outDomainLists, outDFFrames
|
chunk_size = (len(user_flow) // window)
|
||||||
|
last_inrange = chunk_size * window
|
||||||
|
return np.split(user_flow.head(last_inrange), chunk_size) if chunk_size else []
|
||||||
|
|
||||||
|
|
||||||
def get_domain_features(domain, vocab: dict, max_length=40):
|
def get_domain_features(domain, vocab: dict, max_length=40):
|
||||||
@ -82,31 +85,23 @@ def get_domain_features(domain, vocab: dict, max_length=40):
|
|||||||
|
|
||||||
|
|
||||||
def get_all_flow_features(features):
|
def get_all_flow_features(features):
|
||||||
flows = np.stack(list(
|
flows = np.stack(
|
||||||
map(lambda f: f[["duration", "bytes_up", "bytes_down"]], features))
|
map(lambda f: f[["duration", "bytes_up", "bytes_down"]], features)
|
||||||
)
|
)
|
||||||
return np.log1p(flows)
|
return np.log1p(flows)
|
||||||
|
|
||||||
|
|
||||||
def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10):
|
def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10):
|
||||||
domains = []
|
|
||||||
features = []
|
|
||||||
logger.info("get chunks from user data frames")
|
logger.info("get chunks from user data frames")
|
||||||
for i, user_flow in tqdm(list(enumerate(get_flow_per_user(user_flow_df)))):
|
with Pool() as pool:
|
||||||
(domain_windows, feature_windows) = get_user_chunks(user_flow,
|
results = []
|
||||||
windowSize=window_size,
|
for user_flow in tqdm(get_flow_per_user(user_flow_df), total=len(user_flow_df['user_hash'].unique().tolist())):
|
||||||
overlapping=False,
|
results.append(pool.apply_async(get_user_chunks, (user_flow, window_size)))
|
||||||
maxLengthInSeconds=-1)
|
windows = [window for res in results for window in res.get()]
|
||||||
domains += domain_windows
|
|
||||||
features += feature_windows
|
|
||||||
|
|
||||||
logger.info("create training dataset")
|
logger.info("create training dataset")
|
||||||
domain_tr, flow_tr, hits_tr, _, server_tr, trusted_hits_tr = create_dataset_from_lists(domains=domains,
|
domain_tr, flow_tr, hits_tr, _, server_tr, trusted_hits_tr = create_dataset_from_lists(chunks=windows,
|
||||||
flows=features,
|
|
||||||
vocab=char_dict,
|
vocab=char_dict,
|
||||||
max_len=max_len,
|
max_len=max_len)
|
||||||
window_size=window_size)
|
|
||||||
|
|
||||||
# make client labels discrete with 4 different values
|
# make client labels discrete with 4 different values
|
||||||
hits_tr = np.apply_along_axis(lambda x: discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
|
hits_tr = np.apply_along_axis(lambda x: discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
|
||||||
# select only 1.0 and 0.0 from training data
|
# select only 1.0 and 0.0 from training data
|
||||||
@ -143,34 +138,46 @@ def load_h5dataset(path):
|
|||||||
return data["domain"], data["flow"], data["client"], data["server"]
|
return data["domain"], data["flow"], data["client"], data["server"]
|
||||||
|
|
||||||
|
|
||||||
def create_dataset_from_lists(domains, flows, vocab, max_len, window_size=10):
|
def create_dataset_from_lists(chunks, vocab, max_len):
|
||||||
"""
|
"""
|
||||||
combines domain and feature windows to sequential training data
|
combines domain and feature windows to sequential training data
|
||||||
:param domains: list of domain windows
|
:param chunks: list of flow feature windows
|
||||||
:param flows: list of flow feature windows
|
|
||||||
:param vocab:
|
:param vocab:
|
||||||
:param max_len:
|
:param max_len:
|
||||||
:param window_size: size of the flow window
|
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
domain_features = np.array([[get_domain_features(d, vocab, max_len) for d in x] for x in domains])
|
|
||||||
flow_features = get_all_flow_features(flows)
|
def get_domain_features_reduced(d):
|
||||||
hits = np.max(np.stack(map(lambda f: f.virusTotalHits, flows)), axis=1)
|
return get_domain_features(d[0], vocab, max_len)
|
||||||
names = np.unique(np.stack(map(lambda f: f.user_hash, flows)), axis=1)
|
|
||||||
servers = np.max(np.stack(map(lambda f: f.serverLabel, flows)), axis=1)
|
logger.info(" compute domain features")
|
||||||
trusted_hits = np.max(np.stack(map(lambda f: f.trustedHits, flows)), axis=1)
|
domain_features = []
|
||||||
|
for ds in tqdm(map(lambda f: f.domain, chunks)):
|
||||||
|
assert min(np.atleast_3d(ds).shape) > 0, f"shape of 0 for {ds}"
|
||||||
|
domain_features.append(np.apply_along_axis(get_domain_features_reduced, 2, np.atleast_3d(ds)))
|
||||||
|
domain_features = np.concatenate(domain_features, 0)
|
||||||
|
logger.info(" compute flow features")
|
||||||
|
flow_features = get_all_flow_features(chunks)
|
||||||
|
logger.info(" select hits")
|
||||||
|
hits = np.max(np.stack(map(lambda f: f.virusTotalHits, chunks)), axis=1)
|
||||||
|
logger.info(" select names")
|
||||||
|
names = np.unique(np.stack(map(lambda f: f.user_hash, chunks)), axis=1)
|
||||||
|
logger.info(" select servers")
|
||||||
|
servers = np.max(np.stack(map(lambda f: f.serverLabel, chunks)), axis=1)
|
||||||
|
logger.info(" select trusted hits")
|
||||||
|
trusted_hits = np.max(np.stack(map(lambda f: f.trustedHits, chunks)), axis=1)
|
||||||
|
|
||||||
return (domain_features, flow_features,
|
return (domain_features, flow_features,
|
||||||
hits, names, servers, trusted_hits)
|
hits, names, servers, trusted_hits)
|
||||||
|
|
||||||
|
|
||||||
def discretize_label(values, threshold):
|
def discretize_label(values, threshold):
|
||||||
maxVal = np.max(values)
|
max_val = np.max(values)
|
||||||
if maxVal >= threshold:
|
if max_val >= threshold:
|
||||||
return 1.0
|
return 1.0
|
||||||
elif maxVal == -1:
|
elif max_val == -1:
|
||||||
return -1.0
|
return -1.0
|
||||||
elif 0 < maxVal < threshold:
|
elif 0 < max_val < threshold:
|
||||||
return -2.0
|
return -2.0
|
||||||
else:
|
else:
|
||||||
return 0.0
|
return 0.0
|
||||||
@ -198,7 +205,7 @@ def get_user_flow_data(csv_file):
|
|||||||
def get_flow_per_user(df):
|
def get_flow_per_user(df):
|
||||||
users = df['user_hash'].unique().tolist()
|
users = df['user_hash'].unique().tolist()
|
||||||
for user in users:
|
for user in users:
|
||||||
yield df.loc[df.user_hash == user]
|
yield df.loc[df.user_hash == user].dropna(axis=0, how="any")
|
||||||
|
|
||||||
|
|
||||||
def load_or_generate_h5data(h5data, train_data, domain_length, window_size):
|
def load_or_generate_h5data(h5data, train_data, domain_length, window_size):
|
||||||
@ -206,6 +213,7 @@ def load_or_generate_h5data(h5data, train_data, domain_length, window_size):
|
|||||||
logger.info(f"check for h5data {h5data}")
|
logger.info(f"check for h5data {h5data}")
|
||||||
try:
|
try:
|
||||||
open(h5data, "r")
|
open(h5data, "r")
|
||||||
|
raise FileNotFoundError
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
logger.info("h5 data not found - load csv file")
|
logger.info("h5 data not found - load csv file")
|
||||||
user_flow_df = get_user_flow_data(train_data)
|
user_flow_df = get_user_flow_data(train_data)
|
||||||
|
20
main.py
20
main.py
@ -173,7 +173,6 @@ def main_train(param=None):
|
|||||||
else:
|
else:
|
||||||
logger.info("class weights: set default")
|
logger.info("class weights: set default")
|
||||||
custom_class_weights = None
|
custom_class_weights = None
|
||||||
|
|
||||||
logger.info("start training")
|
logger.info("start training")
|
||||||
model.fit([domain_tr, flow_tr],
|
model.fit([domain_tr, flow_tr],
|
||||||
[client_tr, server_tr],
|
[client_tr, server_tr],
|
||||||
@ -195,7 +194,8 @@ def main_test():
|
|||||||
# [client_val, server_val],
|
# [client_val, server_val],
|
||||||
# batch_size=args.batch_size)
|
# batch_size=args.batch_size)
|
||||||
y_pred = clf.predict([domain_val, flow_val],
|
y_pred = clf.predict([domain_val, flow_val],
|
||||||
batch_size=args.batch_size)
|
batch_size=args.batch_size,
|
||||||
|
verbose=1)
|
||||||
np.save(args.future_prediction, y_pred)
|
np.save(args.future_prediction, y_pred)
|
||||||
|
|
||||||
|
|
||||||
@ -247,6 +247,7 @@ def main_visualization():
|
|||||||
plt.scatter(domain_reduced[:, 0], domain_reduced[:, 1], c=servers, cmap=plt.cm.bwr, s=2)
|
plt.scatter(domain_reduced[:, 0], domain_reduced[:, 1], c=servers, cmap=plt.cm.bwr, s=2)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def main_score():
|
def main_score():
|
||||||
# mask = dataset.load_mask_eval(args.data, args.test_image)
|
# mask = dataset.load_mask_eval(args.data, args.test_image)
|
||||||
# pred = np.load(args.pred)
|
# pred = np.load(args.pred)
|
||||||
@ -254,6 +255,19 @@ def main_score():
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def main_data():
|
||||||
|
char_dict = dataset.get_character_dict()
|
||||||
|
user_flow_df = dataset.get_user_flow_data(args.train_data)
|
||||||
|
logger.info("create training dataset")
|
||||||
|
domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(user_flow_df, char_dict,
|
||||||
|
max_len=args.domain_length,
|
||||||
|
window_size=args.window)
|
||||||
|
print(f"domain shape {domain_tr.shape}")
|
||||||
|
print(f"flow shape {flow_tr.shape}")
|
||||||
|
print(f"client shape {client_tr.shape}")
|
||||||
|
print(f"server shape {server_tr.shape}")
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
if "train" in args.modes:
|
if "train" in args.modes:
|
||||||
main_train()
|
main_train()
|
||||||
@ -267,6 +281,8 @@ def main():
|
|||||||
main_score()
|
main_score()
|
||||||
if "paul" in args.modes:
|
if "paul" in args.modes:
|
||||||
main_paul_best()
|
main_paul_best()
|
||||||
|
if "data" in args.modes:
|
||||||
|
main_data()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
x
Reference in New Issue
Block a user