add multi-threading for pre-processing
This commit is contained in:
parent
336be37032
commit
844494eca9
156
dataset.py
156
dataset.py
@ -1,6 +1,7 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import logging
|
||||
import string
|
||||
from multiprocessing import Pool
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
@ -29,48 +30,50 @@ encode_char = np.vectorize(encode_char)
|
||||
|
||||
|
||||
# TODO: refactor
|
||||
def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
||||
maxLengthInSeconds=300):
|
||||
maxMilliSeconds = maxLengthInSeconds * 1000
|
||||
outDomainLists = []
|
||||
outDFFrames = []
|
||||
if not overlapping:
|
||||
numBlocks = int(np.ceil(float(len(dataFrame)) / float(windowSize)))
|
||||
userIDs = np.arange(len(dataFrame))
|
||||
for blockID in np.arange(numBlocks):
|
||||
curIDs = userIDs[(blockID * windowSize):((blockID + 1) * windowSize)]
|
||||
# logger.info(curIDs)
|
||||
useData = dataFrame.iloc[curIDs]
|
||||
curDomains = useData['domain']
|
||||
if maxLengthInSeconds != -1:
|
||||
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
||||
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
||||
if len(underTimeOutIDs) != len(curIDs):
|
||||
curIDs = curIDs[underTimeOutIDs]
|
||||
useData = dataFrame.iloc[curIDs]
|
||||
curDomains = useData['domain']
|
||||
outDomainLists.append(list(curDomains))
|
||||
outDFFrames.append(useData)
|
||||
else:
|
||||
numBlocks = len(dataFrame) + 1 - windowSize
|
||||
userIDs = np.arange(len(dataFrame))
|
||||
for blockID in np.arange(numBlocks):
|
||||
curIDs = userIDs[blockID:blockID + windowSize]
|
||||
useData = dataFrame.iloc[curIDs]
|
||||
curDomains = useData['domain']
|
||||
if maxLengthInSeconds != -1:
|
||||
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
||||
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
||||
if len(underTimeOutIDs) != len(curIDs):
|
||||
curIDs = curIDs[underTimeOutIDs]
|
||||
useData = dataFrame.iloc[curIDs]
|
||||
curDomains = useData['domain']
|
||||
outDomainLists.append(list(curDomains))
|
||||
outDFFrames.append(useData)
|
||||
if len(outDomainLists[-1]) != windowSize:
|
||||
outDomainLists.pop(-1)
|
||||
outDFFrames.pop(-1)
|
||||
return outDomainLists, outDFFrames
|
||||
def get_user_chunks(user_flow, window=10):
|
||||
# TODO: what is maxLengthInSeconds for?!?
|
||||
# maxMilliSeconds = maxLengthInSeconds * 1000
|
||||
# domains = []
|
||||
# flows = []
|
||||
# if not overlapping:
|
||||
# numBlocks = int(np.ceil(len(user_flow) / window))
|
||||
# userIDs = np.arange(len(user_flow))
|
||||
# for blockID in np.arange(numBlocks):
|
||||
# curIDs = userIDs[(blockID * window):((blockID + 1) * window)]
|
||||
# useData = user_flow.iloc[curIDs]
|
||||
# curDomains = useData['domain']
|
||||
# if maxLengthInSeconds != -1:
|
||||
# curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
||||
# underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
||||
# if len(underTimeOutIDs) != len(curIDs):
|
||||
# curIDs = curIDs[underTimeOutIDs]
|
||||
# useData = user_flow.iloc[curIDs]
|
||||
# curDomains = useData['domain']
|
||||
# domains.append(list(curDomains))
|
||||
# flows.append(useData)
|
||||
# else:
|
||||
# numBlocks = len(user_flow) + 1 - window
|
||||
# userIDs = np.arange(len(user_flow))
|
||||
# for blockID in np.arange(numBlocks):
|
||||
# curIDs = userIDs[blockID:blockID + window]
|
||||
# useData = user_flow.iloc[curIDs]
|
||||
# curDomains = useData['domain']
|
||||
# if maxLengthInSeconds != -1:
|
||||
# curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
||||
# underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
||||
# if len(underTimeOutIDs) != len(curIDs):
|
||||
# curIDs = curIDs[underTimeOutIDs]
|
||||
# useData = user_flow.iloc[curIDs]
|
||||
# curDomains = useData['domain']
|
||||
# domains.append(list(curDomains))
|
||||
# flows.append(useData)
|
||||
# if domains and len(domains[-1]) != window:
|
||||
# domains.pop(-1)
|
||||
# flows.pop(-1)
|
||||
# return domains, flows
|
||||
chunk_size = (len(user_flow) // window)
|
||||
last_inrange = chunk_size * window
|
||||
return np.split(user_flow.head(last_inrange), chunk_size) if chunk_size else []
|
||||
|
||||
|
||||
def get_domain_features(domain, vocab: dict, max_length=40):
|
||||
@ -82,31 +85,23 @@ def get_domain_features(domain, vocab: dict, max_length=40):
|
||||
|
||||
|
||||
def get_all_flow_features(features):
|
||||
flows = np.stack(list(
|
||||
map(lambda f: f[["duration", "bytes_up", "bytes_down"]], features))
|
||||
flows = np.stack(
|
||||
map(lambda f: f[["duration", "bytes_up", "bytes_down"]], features)
|
||||
)
|
||||
return np.log1p(flows)
|
||||
|
||||
|
||||
def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10):
|
||||
domains = []
|
||||
features = []
|
||||
logger.info("get chunks from user data frames")
|
||||
for i, user_flow in tqdm(list(enumerate(get_flow_per_user(user_flow_df)))):
|
||||
(domain_windows, feature_windows) = get_user_chunks(user_flow,
|
||||
windowSize=window_size,
|
||||
overlapping=False,
|
||||
maxLengthInSeconds=-1)
|
||||
domains += domain_windows
|
||||
features += feature_windows
|
||||
|
||||
with Pool() as pool:
|
||||
results = []
|
||||
for user_flow in tqdm(get_flow_per_user(user_flow_df), total=len(user_flow_df['user_hash'].unique().tolist())):
|
||||
results.append(pool.apply_async(get_user_chunks, (user_flow, window_size)))
|
||||
windows = [window for res in results for window in res.get()]
|
||||
logger.info("create training dataset")
|
||||
domain_tr, flow_tr, hits_tr, _, server_tr, trusted_hits_tr = create_dataset_from_lists(domains=domains,
|
||||
flows=features,
|
||||
domain_tr, flow_tr, hits_tr, _, server_tr, trusted_hits_tr = create_dataset_from_lists(chunks=windows,
|
||||
vocab=char_dict,
|
||||
max_len=max_len,
|
||||
window_size=window_size)
|
||||
|
||||
max_len=max_len)
|
||||
# make client labels discrete with 4 different values
|
||||
hits_tr = np.apply_along_axis(lambda x: discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
|
||||
# select only 1.0 and 0.0 from training data
|
||||
@ -143,34 +138,46 @@ def load_h5dataset(path):
|
||||
return data["domain"], data["flow"], data["client"], data["server"]
|
||||
|
||||
|
||||
def create_dataset_from_lists(domains, flows, vocab, max_len, window_size=10):
|
||||
def create_dataset_from_lists(chunks, vocab, max_len):
|
||||
"""
|
||||
combines domain and feature windows to sequential training data
|
||||
:param domains: list of domain windows
|
||||
:param flows: list of flow feature windows
|
||||
:param chunks: list of flow feature windows
|
||||
:param vocab:
|
||||
:param max_len:
|
||||
:param window_size: size of the flow window
|
||||
:return:
|
||||
"""
|
||||
domain_features = np.array([[get_domain_features(d, vocab, max_len) for d in x] for x in domains])
|
||||
flow_features = get_all_flow_features(flows)
|
||||
hits = np.max(np.stack(map(lambda f: f.virusTotalHits, flows)), axis=1)
|
||||
names = np.unique(np.stack(map(lambda f: f.user_hash, flows)), axis=1)
|
||||
servers = np.max(np.stack(map(lambda f: f.serverLabel, flows)), axis=1)
|
||||
trusted_hits = np.max(np.stack(map(lambda f: f.trustedHits, flows)), axis=1)
|
||||
|
||||
def get_domain_features_reduced(d):
|
||||
return get_domain_features(d[0], vocab, max_len)
|
||||
|
||||
logger.info(" compute domain features")
|
||||
domain_features = []
|
||||
for ds in tqdm(map(lambda f: f.domain, chunks)):
|
||||
assert min(np.atleast_3d(ds).shape) > 0, f"shape of 0 for {ds}"
|
||||
domain_features.append(np.apply_along_axis(get_domain_features_reduced, 2, np.atleast_3d(ds)))
|
||||
domain_features = np.concatenate(domain_features, 0)
|
||||
logger.info(" compute flow features")
|
||||
flow_features = get_all_flow_features(chunks)
|
||||
logger.info(" select hits")
|
||||
hits = np.max(np.stack(map(lambda f: f.virusTotalHits, chunks)), axis=1)
|
||||
logger.info(" select names")
|
||||
names = np.unique(np.stack(map(lambda f: f.user_hash, chunks)), axis=1)
|
||||
logger.info(" select servers")
|
||||
servers = np.max(np.stack(map(lambda f: f.serverLabel, chunks)), axis=1)
|
||||
logger.info(" select trusted hits")
|
||||
trusted_hits = np.max(np.stack(map(lambda f: f.trustedHits, chunks)), axis=1)
|
||||
|
||||
return (domain_features, flow_features,
|
||||
hits, names, servers, trusted_hits)
|
||||
|
||||
|
||||
def discretize_label(values, threshold):
|
||||
maxVal = np.max(values)
|
||||
if maxVal >= threshold:
|
||||
max_val = np.max(values)
|
||||
if max_val >= threshold:
|
||||
return 1.0
|
||||
elif maxVal == -1:
|
||||
elif max_val == -1:
|
||||
return -1.0
|
||||
elif 0 < maxVal < threshold:
|
||||
elif 0 < max_val < threshold:
|
||||
return -2.0
|
||||
else:
|
||||
return 0.0
|
||||
@ -198,7 +205,7 @@ def get_user_flow_data(csv_file):
|
||||
def get_flow_per_user(df):
|
||||
users = df['user_hash'].unique().tolist()
|
||||
for user in users:
|
||||
yield df.loc[df.user_hash == user]
|
||||
yield df.loc[df.user_hash == user].dropna(axis=0, how="any")
|
||||
|
||||
|
||||
def load_or_generate_h5data(h5data, train_data, domain_length, window_size):
|
||||
@ -206,6 +213,7 @@ def load_or_generate_h5data(h5data, train_data, domain_length, window_size):
|
||||
logger.info(f"check for h5data {h5data}")
|
||||
try:
|
||||
open(h5data, "r")
|
||||
raise FileNotFoundError
|
||||
except FileNotFoundError:
|
||||
logger.info("h5 data not found - load csv file")
|
||||
user_flow_df = get_user_flow_data(train_data)
|
||||
|
20
main.py
20
main.py
@ -173,7 +173,6 @@ def main_train(param=None):
|
||||
else:
|
||||
logger.info("class weights: set default")
|
||||
custom_class_weights = None
|
||||
|
||||
logger.info("start training")
|
||||
model.fit([domain_tr, flow_tr],
|
||||
[client_tr, server_tr],
|
||||
@ -195,7 +194,8 @@ def main_test():
|
||||
# [client_val, server_val],
|
||||
# batch_size=args.batch_size)
|
||||
y_pred = clf.predict([domain_val, flow_val],
|
||||
batch_size=args.batch_size)
|
||||
batch_size=args.batch_size,
|
||||
verbose=1)
|
||||
np.save(args.future_prediction, y_pred)
|
||||
|
||||
|
||||
@ -247,6 +247,7 @@ def main_visualization():
|
||||
plt.scatter(domain_reduced[:, 0], domain_reduced[:, 1], c=servers, cmap=plt.cm.bwr, s=2)
|
||||
plt.show()
|
||||
|
||||
|
||||
def main_score():
|
||||
# mask = dataset.load_mask_eval(args.data, args.test_image)
|
||||
# pred = np.load(args.pred)
|
||||
@ -254,6 +255,19 @@ def main_score():
|
||||
pass
|
||||
|
||||
|
||||
def main_data():
|
||||
char_dict = dataset.get_character_dict()
|
||||
user_flow_df = dataset.get_user_flow_data(args.train_data)
|
||||
logger.info("create training dataset")
|
||||
domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(user_flow_df, char_dict,
|
||||
max_len=args.domain_length,
|
||||
window_size=args.window)
|
||||
print(f"domain shape {domain_tr.shape}")
|
||||
print(f"flow shape {flow_tr.shape}")
|
||||
print(f"client shape {client_tr.shape}")
|
||||
print(f"server shape {server_tr.shape}")
|
||||
|
||||
|
||||
def main():
|
||||
if "train" in args.modes:
|
||||
main_train()
|
||||
@ -267,6 +281,8 @@ def main():
|
||||
main_score()
|
||||
if "paul" in args.modes:
|
||||
main_paul_best()
|
||||
if "data" in args.modes:
|
||||
main_data()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user