refactor models package: create separate modules for pauls and renes networks
This commit is contained in:
parent
3862dce975
commit
7c05ef6a12
14
main.py
14
main.py
@ -87,10 +87,6 @@ def main():
|
||||
kernel_size = 3
|
||||
drop_out = 0.5
|
||||
filters = 128
|
||||
hidden_dims = 100
|
||||
vocabSize = 40
|
||||
threshold = 3
|
||||
minFlowsPerUser = 10
|
||||
|
||||
char_dict = dataset.get_character_dict()
|
||||
user_flow_df = dataset.get_user_flow_data()
|
||||
@ -110,13 +106,13 @@ def main():
|
||||
client_labels = client_labels[idx]
|
||||
server_labels = server_tr[idx]
|
||||
|
||||
shared_cnn = models.get_embedding_network_rene(len(char_dict) + 1, args.embedding, args.domain_length,
|
||||
args.hidden_char_dims, args.domain_embedding, 0.5)
|
||||
shared_cnn = models.renes_networks.get_embedding(len(char_dict) + 1, args.embedding, args.domain_length,
|
||||
args.hidden_char_dims, kernel_size, args.domain_embedding, 0.5)
|
||||
shared_cnn.summary()
|
||||
|
||||
model = models.get_top_cnn_rene(cnnDropout, flowFeatures, args.domain_embedding,
|
||||
args.window, args.domain_length, filters, kernel_size,
|
||||
cnnHiddenDims, shared_cnn)
|
||||
model = models.renes_networks.get_model(cnnDropout, flowFeatures, args.domain_embedding,
|
||||
args.window, args.domain_length, filters, kernel_size,
|
||||
cnnHiddenDims, shared_cnn)
|
||||
model.summary()
|
||||
|
||||
model.compile(optimizer='adam',
|
||||
|
81
models.py
81
models.py
@ -1,81 +0,0 @@
|
||||
import keras
|
||||
from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed, MaxPool1D
|
||||
|
||||
|
||||
# designed by paul
|
||||
def get_embedding_network_paul(vocab_size, embedding_size, input_length, filters, kernel_size,
|
||||
hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Activation('relu')(y)
|
||||
return Model(x, y)
|
||||
|
||||
|
||||
def get_embedding_network_rene(vocab_size, embedding_size, input_length,
|
||||
hidden_char_dims, hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size, mask_zero=True)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=5, activation='relu')(y)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Activation('relu')(y)
|
||||
return Model(x, y)
|
||||
|
||||
|
||||
def get_full_model(vocabSize, embeddingSize, maxLen, domainFeatures, flowFeatures,
|
||||
filters, h1, h2, dropout, dense):
|
||||
pass
|
||||
|
||||
|
||||
# designed by paul
|
||||
def get_top_cnn(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim,
|
||||
cnn):
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
# TODO: add more layers?
|
||||
y = Conv1D(cnn_dims,
|
||||
kernel_size,
|
||||
activation='relu',
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
|
||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
||||
|
||||
|
||||
def get_top_cnn_rene(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn):
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
# TODO: add more layers?
|
||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu',
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
|
||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
2
models/__init__.py
Normal file
2
models/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from . import pauls_networks
|
||||
from . import renes_networks
|
37
models/pauls_networks.py
Normal file
37
models/pauls_networks.py
Normal file
@ -0,0 +1,37 @@
|
||||
import keras
|
||||
from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
|
||||
|
||||
|
||||
def get_embedding(vocab_size, embedding_size, input_length,
|
||||
filters, kernel_size, hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Activation('relu')(y)
|
||||
return Model(x, y)
|
||||
|
||||
|
||||
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn):
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
# TODO: add more layers?
|
||||
y = Conv1D(cnn_dims,
|
||||
kernel_size,
|
||||
activation='relu',
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
|
||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
40
models/renes_networks.py
Normal file
40
models/renes_networks.py
Normal file
@ -0,0 +1,40 @@
|
||||
import keras
|
||||
from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, TimeDistributed, MaxPool1D
|
||||
|
||||
|
||||
def get_embedding(vocab_size, embedding_size, input_length,
|
||||
hidden_char_dims, kernel_size, hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=5, activation='relu')(y)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Dense(hidden_dims, activation="relu")(y)
|
||||
return Model(x, y)
|
||||
|
||||
|
||||
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn):
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
# TODO: add more layers?
|
||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu',
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu')(y)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
|
||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
Loading…
x
Reference in New Issue
Block a user