added new networks for domain embedding and classification task
This commit is contained in:
parent
59c1176e85
commit
3862dce975
3
.gitignore
vendored
3
.gitignore
vendored
@ -99,4 +99,5 @@ ENV/
|
||||
*.tif
|
||||
*.joblib
|
||||
*.csv
|
||||
*.csv.gz
|
||||
*.csv.gz
|
||||
*.csv.tar.*
|
43
main.py
43
main.py
@ -37,9 +37,21 @@ parser.add_argument("--epochs", action="store", dest="epochs",
|
||||
# parser.add_argument("--samples_val", action="store", dest="samples_val",
|
||||
# default=10000, type=int)
|
||||
#
|
||||
# parser.add_argument("--area", action="store", dest="area_size",
|
||||
# default=25, type=int)
|
||||
#
|
||||
parser.add_argument("--embd", action="store", dest="embedding",
|
||||
default=128, type=int)
|
||||
|
||||
parser.add_argument("--hidden_char_dims", action="store", dest="hidden_char_dims",
|
||||
default=256, type=int)
|
||||
|
||||
parser.add_argument("--window", action="store", dest="window",
|
||||
default=10, type=int)
|
||||
|
||||
parser.add_argument("--domain_length", action="store", dest="domain_length",
|
||||
default=40, type=int)
|
||||
|
||||
parser.add_argument("--domain_embd", action="store", dest="domain_embedding",
|
||||
default=512, type=int)
|
||||
|
||||
# parser.add_argument("--queue", action="store", dest="queue_size",
|
||||
# default=50, type=int)
|
||||
#
|
||||
@ -59,6 +71,7 @@ parser.add_argument("--epochs", action="store", dest="epochs",
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
# config = tf.ConfigProto(log_device_placement=True)
|
||||
# config.gpu_options.per_process_gpu_memory_fraction = 0.5
|
||||
# config.gpu_options.allow_growth = True
|
||||
@ -67,24 +80,17 @@ args = parser.parse_args()
|
||||
|
||||
def main():
|
||||
# parameter
|
||||
innerCNNFilters = 512
|
||||
innerCNNKernelSize = 2
|
||||
cnnDropout = 0.5
|
||||
cnnHiddenDims = 1024
|
||||
domainFeatures = 512
|
||||
flowFeatures = 3
|
||||
numCiscoFeatures = 30
|
||||
windowSize = 10
|
||||
maxLen = 40
|
||||
embeddingSize = 100
|
||||
kernel_size = 2
|
||||
kernel_size = 3
|
||||
drop_out = 0.5
|
||||
filters = 2
|
||||
filters = 128
|
||||
hidden_dims = 100
|
||||
vocabSize = 40
|
||||
threshold = 3
|
||||
minFlowsPerUser = 10
|
||||
numEpochs = 100
|
||||
|
||||
char_dict = dataset.get_character_dict()
|
||||
user_flow_df = dataset.get_user_flow_data()
|
||||
@ -92,7 +98,7 @@ def main():
|
||||
print("create training dataset")
|
||||
(X_tr, hits_tr, names_tr, server_tr, trusted_hits_tr) = dataset.create_dataset_from_flows(
|
||||
user_flow_df, char_dict,
|
||||
max_len=maxLen, window_size=windowSize)
|
||||
max_len=args.domain_length, window_size=args.window)
|
||||
# make client labels discrete with 4 different values
|
||||
# TODO: use trusted_hits_tr for client classification too
|
||||
client_labels = np.apply_along_axis(lambda x: dataset.discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
|
||||
@ -104,11 +110,14 @@ def main():
|
||||
client_labels = client_labels[idx]
|
||||
server_labels = server_tr[idx]
|
||||
|
||||
shared_cnn = models.get_shared_cnn(len(char_dict) + 1, embeddingSize, maxLen,
|
||||
domainFeatures, kernel_size, domainFeatures, 0.5)
|
||||
shared_cnn = models.get_embedding_network_rene(len(char_dict) + 1, args.embedding, args.domain_length,
|
||||
args.hidden_char_dims, args.domain_embedding, 0.5)
|
||||
shared_cnn.summary()
|
||||
|
||||
model = models.get_top_cnn(shared_cnn, flowFeatures, maxLen, windowSize, domainFeatures, filters, kernel_size,
|
||||
cnnHiddenDims, cnnDropout)
|
||||
model = models.get_top_cnn_rene(cnnDropout, flowFeatures, args.domain_embedding,
|
||||
args.window, args.domain_length, filters, kernel_size,
|
||||
cnnHiddenDims, shared_cnn)
|
||||
model.summary()
|
||||
|
||||
model.compile(optimizer='adam',
|
||||
loss='binary_crossentropy',
|
||||
|
64
models.py
64
models.py
@ -1,10 +1,11 @@
|
||||
import keras
|
||||
from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed, MaxPool1D
|
||||
|
||||
|
||||
def get_shared_cnn(vocab_size, embedding_size, input_length, filters, kernel_size,
|
||||
hidden_dims, drop_out):
|
||||
# designed by paul
|
||||
def get_embedding_network_paul(vocab_size, embedding_size, input_length, filters, kernel_size,
|
||||
hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||
@ -15,26 +16,65 @@ def get_shared_cnn(vocab_size, embedding_size, input_length, filters, kernel_siz
|
||||
return Model(x, y)
|
||||
|
||||
|
||||
def get_embedding_network_rene(vocab_size, embedding_size, input_length,
|
||||
hidden_char_dims, hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size, mask_zero=True)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=5, activation='relu')(y)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Activation('relu')(y)
|
||||
return Model(x, y)
|
||||
|
||||
|
||||
def get_full_model(vocabSize, embeddingSize, maxLen, domainFeatures, flowFeatures,
|
||||
filters, h1, h2, dropout, dense):
|
||||
pass
|
||||
|
||||
|
||||
def get_top_cnn(cnn, numFeatures, maxLen, windowSize, domainFeatures, filters, kernel_size, cnnHiddenDims, cnnDropout):
|
||||
ipt_domains = Input(shape=(windowSize, maxLen), name="ipt_domains")
|
||||
# designed by paul
|
||||
def get_top_cnn(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim,
|
||||
cnn):
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
ipt_flows = Input(shape=(windowSize, numFeatures), name="ipt_flows")
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# add second cnn
|
||||
y = Conv1D(filters,
|
||||
# CNN processing a small slides of flow windows
|
||||
# TODO: add more layers?
|
||||
y = Conv1D(cnn_dims,
|
||||
kernel_size,
|
||||
activation='relu',
|
||||
input_shape=(windowSize, domainFeatures + numFeatures))(merged)
|
||||
# TODO: why global pooling? -> 3D to 2D
|
||||
# we use max pooling:
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(cnnHiddenDims, activation='relu')(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
|
||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
||||
|
||||
|
||||
def get_top_cnn_rene(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn):
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
# TODO: add more layers?
|
||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu',
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
|
||||
|
@ -4,7 +4,6 @@ import joblib
|
||||
import pandas as pd
|
||||
|
||||
df = joblib.load("/mnt/projekte/pmlcluster/cisco/trainData/multipleTaskLearning/currentData.joblib")
|
||||
df = df["data"]
|
||||
df = pd.concat(df)
|
||||
df = pd.concat(df["data"])
|
||||
df.reset_index(inplace=True)
|
||||
df.to_csv("/tmp/rk/full_dataset.csv.gz", compression="gzip")
|
||||
df.to_csv("/tmp/rk/full_future_dataset.csv.gz", compression="gzip")
|
||||
|
Loading…
Reference in New Issue
Block a user