855 lines
36 KiB
Python
Raw Normal View History

import logging
import operator
2017-07-09 23:58:08 +02:00
import os
2017-07-03 13:48:12 +02:00
import joblib
import numpy as np
import pandas as pd
import tensorflow as tf
2017-09-28 12:23:22 +02:00
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint
from sklearn.metrics import confusion_matrix
import arguments
import dataset
2017-07-07 16:48:10 +02:00
import hyperband
import models
# create logger
import visualize
from arguments import get_model_args
from utils import exists_or_make_path, get_custom_class_weights, get_custom_sample_weights, load_model
logger = logging.getLogger('cisco_logger')
logger.setLevel(logging.DEBUG)
logger.propagate = False
2017-07-03 13:48:12 +02:00
# create console handler and set level to debug
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
2017-07-05 21:19:19 +02:00
# create formatter
formatter1 = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
2017-07-05 21:19:19 +02:00
# add formatter to ch
ch.setFormatter(formatter1)
2017-07-03 13:48:12 +02:00
# add ch to logger
logger.addHandler(ch)
2017-07-05 21:19:19 +02:00
# ch = logging.FileHandler("info.log")
# ch.setLevel(logging.DEBUG)
#
# # create formatter
# formatter2 = logging.Formatter('!! %(asctime)s - %(name)s - %(levelname)s - %(message)s')
#
# # add formatter to ch
# ch.setFormatter(formatter2)
#
# # add ch to logger
# logger.addHandler(ch)
args = arguments.parse()
if args.gpu:
config = tf.ConfigProto(log_device_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.5
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
2017-06-30 10:42:21 +02:00
# default parameter
PARAMS = {
"type": args.model_type,
"embedding_type": args.embedding_type,
# "depth": args.model_depth,
"batch_size": args.batch_size,
"window_size": args.window,
"domain_length": args.domain_length,
"flow_features": 3,
#
'dropout': 0.5, # currently fix
'embedding': args.embedding,
'flow_features': 3,
'filter_embedding': args.filter_embedding,
'dense_embedding': args.dense_embedding,
'kernel_embedding': args.kernel_embedding,
'filter_main': args.filter_main,
'dense_main': args.dense_main,
'kernel_main': args.kernel_main,
'model_output': args.model_output
}
2017-06-30 10:42:21 +02:00
# TODO: remove inner global params
2017-11-04 17:58:21 +01:00
def get_param_dist(dist_size="small"):
if dist_size == "small":
return {
# static params
"type": [args.model_type],
"embedding_type": [args.embedding_type],
# "depth": [args.model_depth],
"model_output": [args.model_output],
"batch_size": [args.batch_size],
"window_size": [args.window],
"flow_features": [3],
"domain_length": [args.domain_length],
# model params
"embedding": [2 ** x for x in range(3, 6)],
"filter_embedding": [2 ** x for x in range(1, 8)],
"kernel_embedding": [1, 3, 5],
"dense_embedding": [2 ** x for x in range(4, 8)],
"dropout": [0.5],
"filter_main": [2 ** x for x in range(1, 8)],
"kernel_main": [1, 3, 5],
"dense_main": [2 ** x for x in range(1, 8)],
}
else:
return {
# static params
"type": [args.model_type],
"embedding_type": [args.embedding_type],
# "depth": [args.model_depth],
"model_output": [args.model_output],
"batch_size": [args.batch_size],
"window_size": [args.window],
"flow_features": [3],
"domain_length": [args.domain_length],
# model params
"embedding": [2 ** x for x in range(3, 7)],
"filter_embedding": [2 ** x for x in range(1, 10)],
"kernel_embedding": [1, 3, 5, 7, 9],
"dense_embedding": [2 ** x for x in range(4, 10)],
"dropout": [0.5],
"filter_main": [2 ** x for x in range(1, 10)],
"kernel_main": [1, 3, 5, 7, 9],
"dense_main": [2 ** x for x in range(1, 12)],
}
def shuffle_training_data(domain, flow, client, server):
idx = np.random.permutation(len(domain))
domain = domain[idx]
flow = flow[idx]
client = client[idx]
server = server[idx]
return domain, flow, client, server
2017-07-08 11:53:03 +02:00
def main_paul_best():
pauls_best_params = {
2017-11-07 20:32:08 +01:00
"type": "paul",
"batch_size": 64,
"window_size": 10,
"domain_length": 40,
"flow_features": 3,
#
'dropout': 0.5,
'domain_features': 32,
'drop_out': 0.5,
'embedding_size': 64,
'filter_main': 512,
'flow_features': 3,
'dense_main': 32,
'filter_embedding': 32,
'hidden_embedding': 32,
'kernel_embedding': 8,
'kernels_main': 8,
'input_length': 40
}
main_train(pauls_best_params)
2017-07-08 11:53:03 +02:00
def main_hyperband(data, domain_length, window_size, model_type, result_file, max_iter, dist_size="small"):
logger.info("create training dataset")
domain_tr, flow_tr, client_tr, server_tr = load_data(data, domain_length, window_size, model_type, shuffled=True)
return run_hyperband(dist_size, domain_tr, flow_tr, client_tr, server_tr, max_iter, result_file)
def run_hyperband(dist_size, domain, flow, client, server, max_iter, savefile):
param_dist = get_param_dist(dist_size)
hp = hyperband.Hyperband(param_dist,
[domain, flow],
[client, server],
max_iter=max_iter,
savefile=savefile)
results = hp.run()
return results
2017-07-07 16:48:10 +02:00
def train(parameters, features, labels):
pass
def load_data(data, domain_length, window_size, model_type, shuffled=False):
# data preparation
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(data, domain_length,
2017-11-05 22:52:50 +01:00
window_size)
server_tr = np.max(server_windows_tr, axis=1)
2017-11-05 22:52:50 +01:00
if model_type in ("inter", "staggered"):
server_tr = np.expand_dims(server_windows_tr, 2)
if shuffled:
domain_tr, flow_tr, client_tr, server_tr = shuffle_training_data(domain_tr, flow_tr, client_tr, server_tr)
2017-11-04 17:58:21 +01:00
return domain_tr, flow_tr, client_tr, server_tr
2017-11-10 10:18:13 +01:00
def get_weighting(class_weights, sample_weights, client, server):
if class_weights:
logger.info("class weights: compute custom weights")
custom_class_weights = get_custom_class_weights(client, server)
logger.info(custom_class_weights)
else:
logger.info("class weights: set default")
custom_class_weights = None
if sample_weights:
logger.info("class weights: compute custom weights")
custom_sample_weights = get_custom_sample_weights(client, server)
logger.info(custom_sample_weights)
else:
logger.info("class weights: set default")
custom_sample_weights = None
return custom_class_weights, custom_sample_weights
2017-11-04 17:58:21 +01:00
def main_train(param=None):
logger.info(f"Create model path {args.model_path}")
exists_or_make_path(args.model_path)
logger.info(f"Use command line arguments: {args}")
# data preparation
domain_tr, flow_tr, client_tr, server_tr = load_data(args.data, args.domain_length,
args.window, args.model_type)
# call hyperband if used
if args.hyperband_results:
try:
hyper_results = joblib.load(args.hyperband_results)
except Exception:
logger.info("start hyperband parameter search")
hyper_results = run_hyperband("small", domain_tr, flow_tr, client_tr, server_tr, args.hyper_max_iter,
args.hyperband_results)
2017-11-04 17:58:21 +01:00
param = sorted(hyper_results, key=operator.itemgetter("loss"))[0]["params"]
param["type"] = args.model_type
logger.info(f"select params from result: {param}")
if not param:
param = PARAMS
2017-11-10 10:18:13 +01:00
# custom class or sample weights
custom_class_weights, custom_sample_weights = get_weighting(args.class_weights, args.sample_weights,
client_tr.value, server_tr)
for i in range(args.runs):
2017-11-04 17:58:21 +01:00
model_path = os.path.join(args.model_path, f"clf_{i}.h5")
train_log_path = os.path.join(args.model_path, f"train_{i}.log.csv")
2017-11-04 17:58:21 +01:00
# define training call backs
logger.info("define callbacks")
callbacks = []
callbacks.append(ModelCheckpoint(filepath=model_path,
monitor='loss',
verbose=False,
save_best_only=True))
callbacks.append(CSVLogger(train_log_path))
logger.info(f"Use early stopping: {args.stop_early}")
if args.stop_early:
callbacks.append(EarlyStopping(monitor='val_loss',
patience=5,
verbose=False))
custom_metrics = models.get_metric_functions()
logger.info(f"Generator model with params: {param}")
model = models.get_models_by_params(param)
2017-11-04 17:58:21 +01:00
features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value}
if args.model_output == "both":
labels = {"client": client_tr.value, "server": server_tr}
loss_weights = {"client": 1.0, "server": 1.0}
elif args.model_output == "client":
labels = {"client": client_tr.value}
loss_weights = {"client": 1.0}
elif args.model_output == "server":
labels = {"server": server_tr}
loss_weights = {"server": 1.0}
else:
raise ValueError("unknown model output")
logger.info(f"select model: {args.model_type}")
if args.model_type == "staggered":
logger.info("compile and pre-train server model")
logger.info(model.get_config())
model.compile(optimizer='adam',
loss='binary_crossentropy',
loss_weights={"client": 0.0, "server": 1.0},
metrics=['accuracy'] + custom_metrics)
model.summary()
model.fit(features, labels,
batch_size=args.batch_size,
epochs=args.epochs,
class_weight=custom_class_weights,
sample_weight=custom_sample_weights)
logger.info("fix server model")
model.get_layer("domain_cnn").trainable = False
model.get_layer("domain_cnn").layer.trainable = False
model.get_layer("dense_server").trainable = False
model.get_layer("server").trainable = False
loss_weights = {"client": 1.0, "server": 0.0}
logger.info("compile and train model")
logger.info(model.get_config())
model.compile(optimizer='adam',
loss='binary_crossentropy',
2017-11-04 17:58:21 +01:00
loss_weights=loss_weights,
metrics=['accuracy'] + custom_metrics)
2017-11-04 17:58:21 +01:00
2017-10-06 10:38:00 +02:00
model.summary()
model.fit(features, labels,
batch_size=args.batch_size,
epochs=args.epochs,
2017-11-04 17:58:21 +01:00
callbacks=callbacks,
class_weight=custom_class_weights,
sample_weight=custom_sample_weights)
2017-07-05 21:19:19 +02:00
2017-09-28 12:23:22 +02:00
def main_retrain():
source = os.path.join(args.model_source, "clf.h5")
destination = os.path.join(args.model_destination, "clf.h5")
logger.info(f"Use command line arguments: {args}")
2017-09-29 23:03:07 +02:00
exists_or_make_path(args.model_destination)
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.data,
2017-09-28 12:23:22 +02:00
args.domain_length,
args.window)
logger.info("define callbacks")
callbacks = []
callbacks.append(ModelCheckpoint(filepath=destination,
monitor='loss',
verbose=False,
save_best_only=True))
callbacks.append(CSVLogger(args.train_log))
logger.info(f"Use early stopping: {args.stop_early}")
if args.stop_early:
callbacks.append(EarlyStopping(monitor='val_loss',
patience=5,
verbose=False))
server_tr = np.max(server_windows_tr, axis=1)
if args.class_weights:
logger.info("class weights: compute custom weights")
custom_class_weights = get_custom_class_weights(client_tr.value, server_tr)
logger.info(custom_class_weights)
else:
logger.info("class weights: set default")
custom_class_weights = None
logger.info(f"Load pretrained model")
embedding, model = load_model(source, custom_objects=models.get_custom_objects())
2017-09-28 12:23:22 +02:00
if args.model_type in ("inter", "staggered"):
server_tr = np.expand_dims(server_windows_tr, 2)
features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value}
if args.model_output == "both":
labels = {"client": client_tr.value, "server": server_tr}
elif args.model_output == "client":
labels = {"client": client_tr.value}
elif args.model_output == "server":
labels = {"server": server_tr}
else:
raise ValueError("unknown model output")
logger.info("re-train model")
embedding.summary()
model.summary()
model.fit(features, labels,
batch_size=args.batch_size,
epochs=args.epochs,
callbacks=callbacks,
class_weight=custom_class_weights,
initial_epoch=args.initial_epoch)
def main_test():
2017-11-10 10:18:13 +01:00
logger.info("load test data")
domain_val, flow_val, _, _, _, _ = dataset.load_or_generate_raw_h5data(args.data, args.domain_length, args.window)
2017-11-10 10:18:13 +01:00
logger.info("load test domains")
domain_encs, _, _ = dataset.load_or_generate_domains(args.data, args.domain_length)
2017-11-10 10:18:13 +01:00
def get_dir(path):
return os.path.split(os.path.normpath(path))
results = {}
for model_path in args.model_paths:
file = get_dir(model_path)[1]
results[file] = {}
logger.info(f"process model {model_path}")
embd_model, clf_model = load_model(model_path, custom_objects=models.get_custom_objects())
pred = clf_model.predict([domain_val, flow_val],
batch_size=args.batch_size,
verbose=1)
if args.model_output == "both":
c_pred, s_pred = pred
results[file]["client_pred"] = c_pred
results[file]["server_pred"] = s_pred
elif args.model_output == "client":
results[file]["client_pred"] = pred
else:
results[file]["server_pred"] = pred
domain_embeddings = embd_model.predict(domain_encs, batch_size=args.batch_size, verbose=1)
results["domain_embds"] = domain_embeddings
2017-11-10 10:18:13 +01:00
# store results every round - safety first!
dataset.save_predictions(get_dir(model_path)[0], results)
def main_visualization():
def plot_model(clf_model, path):
embd, model = load_model(clf_model, custom_objects=models.get_custom_objects())
visualize.plot_model_as(embd, os.path.join(path, "model_embd.pdf"), shapes=False)
visualize.plot_model_as(model, os.path.join(path, "model_clf.pdf"), shapes=False)
def vis(model_name, model_path, df, df_paul, aggregation, curve):
visualize.plot_clf()
if aggregation == "user":
df = df.groupby(df.names).max()
df_paul = df_paul.groupby(df_paul.names).max()
if curve == "prc":
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_name)
visualize.plot_precision_recall(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
elif curve == "roc":
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_name)
visualize.plot_roc_curve(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save("{}/{}_{}.pdf".format(model_path, aggregation, curve))
_, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.data,
args.domain_length,
args.window)
results = dataset.load_predictions(args.model_path)
df = pd.DataFrame(data={
"names": name_val, "client_pred": results["client_pred"].flatten(),
"hits_vt": hits_vt, "hits_trusted": hits_trusted
})
df["client_val"] = np.logical_or(df.hits_vt == 1.0, df.hits_trusted >= 3)
df_user = df.groupby(df.names).max()
paul = dataset.load_predictions("results/paul/")
df_paul = pd.DataFrame(data={
"names": paul["testNames"].flatten(), "client_pred": paul["testScores"].flatten(),
"hits_vt": paul["testLabel"].flatten(), "hits_trusted": paul["testHits"].flatten()
})
df_paul["client_val"] = np.logical_or(df_paul.hits_vt == 1.0, df_paul.hits_trusted >= 3)
logger.info("plot model")
plot_model(args.clf_model, args.model_path)
# logger.info("plot training curve")
# logs = pd.read_csv(args.train_log)
# if "acc" in logs.keys():
# visualize.plot_training_curve(logs, "", "{}/client_train.png".format(args.model_path))
# elif "client_acc" in logs.keys() and "server_acc" in logs.keys():
# visualize.plot_training_curve(logs, "client_", "{}/client_train.png".format(args.model_path))
# visualize.plot_training_curve(logs, "server_", "{}/server_train.png".format(args.model_path))
# else:
# logger.warning("Error while plotting training curves")
logger.info("plot window prc")
vis(args.model_name, args.model_path, df, df_paul, "window", "prc")
logger.info("plot window roc")
vis(args.model_name, args.model_path, df, df_paul, "window", "roc")
logger.info("plot user prc")
vis(args.model_name, args.model_path, df, df_paul, "user", "prc")
logger.info("plot user roc")
vis(args.model_name, args.model_path, df, df_paul, "user", "roc")
2017-09-10 23:40:14 +02:00
# absolute values
visualize.plot_confusion_matrix(df.client_val.as_matrix(), df.client_pred.as_matrix().round(),
"{}/client_cov.pdf".format(args.model_path),
normalize=False, title="Client Confusion Matrix")
visualize.plot_confusion_matrix(df_user.client_val.as_matrix(), df_user.client_pred.as_matrix().round(),
"{}/user_cov.pdf".format(args.model_path),
normalize=False, title="User Confusion Matrix")
2017-09-10 23:40:14 +02:00
# normalized
visualize.plot_confusion_matrix(df.client_val.as_matrix(), df.client_pred.as_matrix().round(),
"{}/client_cov_norm.pdf".format(args.model_path),
2017-09-10 23:40:14 +02:00
normalize=True, title="Client Confusion Matrix")
visualize.plot_confusion_matrix(df_user.client_val.as_matrix(), df_user.client_pred.as_matrix().round(),
"{}/user_cov_norm.pdf".format(args.model_path),
2017-09-10 23:40:14 +02:00
normalize=True, title="User Confusion Matrix")
def main_visualize_all():
_, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.data,
args.domain_length,
args.window)
def load_df(path):
res = dataset.load_predictions(path)
res = pd.DataFrame(data={
"names": name_val, "client_pred": res["client_pred"].flatten(),
"hits_vt": hits_vt, "hits_trusted": hits_trusted
})
res["client_val"] = np.logical_or(res.hits_vt == 1.0, res.hits_trusted >= 3)
return res
dfs = [(model_args["model_name"], load_df(model_args["model_path"])) for model_args in get_model_args(args)]
paul = dataset.load_predictions("results/paul/")
df_paul = pd.DataFrame(data={
"names": paul["testNames"].flatten(), "client_pred": paul["testScores"].flatten(),
"hits_vt": paul["testLabel"].flatten(), "hits_trusted": paul["testHits"].flatten()
})
df_paul["client_val"] = np.logical_or(df_paul.hits_vt == 1.0, df_paul.hits_trusted >= 3)
def vis(output_prefix, dfs, df_paul, aggregation, curve):
visualize.plot_clf()
if curve == "prc":
for model_name, df in dfs:
if aggregation == "user":
df = df.groupby(df.names).max()
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_name)
if aggregation == "user":
df_paul = df_paul.groupby(df_paul.names).max()
visualize.plot_precision_recall(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
elif curve == "roc":
for model_name, df in dfs:
if aggregation == "user":
df = df.groupby(df.names).max()
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_name)
if aggregation == "user":
df_paul = df_paul.groupby(df_paul.names).max()
visualize.plot_roc_curve(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save("{}_{}_{}.pdf".format(output_prefix, aggregation, curve))
logger.info("plot pr curves")
vis(args.output_prefix, dfs, df_paul, "window", "prc")
logger.info("plot roc curves")
vis(args.output_prefix, dfs, df_paul, "window", "roc")
2017-09-04 13:37:26 +02:00
logger.info("plot user pr curves")
vis(args.output_prefix, dfs, df_paul, "user", "prc")
2017-09-04 13:37:26 +02:00
logger.info("plot user roc curves")
vis(args.output_prefix, dfs, df_paul, "user", "roc")
def main_visualize_all_embds():
def load_df(path):
res = dataset.load_predictions(path)
return res["domain_embds"]
dfs = [(model_args["model_name"], load_df(model_args["model_path"])) for model_args in get_model_args(args)]
from sklearn.decomposition import TruncatedSVD
def vis2(domain_embedding, labels):
n_levels = 7
logger.info(f"reduction for {len(domain_embedding)} points")
red = TruncatedSVD(n_components=2, algorithm="arpack")
domains = red.fit_transform(domain_embedding)
logger.info("plot kde")
benign = domains[labels.sum(axis=1) == 0]
# print(domains.shape)
# print(benign.shape)
# benign_idx
# sns.kdeplot(domains[labels.sum(axis=1) == 0, 0], domains[labels.sum(axis=1) == 0, 1],
# cmap="Blues", label="benign", n_levels=9, alpha=0.35, shade=True, shade_lowest=False)
# sns.kdeplot(domains[labels[:, 1], 0], domains[labels[:, 1], 1],
# cmap="Greens", label="server", n_levels=5, alpha=0.35, shade=True, shade_lowest=False)
# sns.kdeplot(domains[labels[:, 0], 0], domains[labels[:, 0], 1],
# cmap="Reds", label="client", n_levels=5, alpha=0.35, shade=True, shade_lowest=False)
plt.scatter(benign[benign_idx, 0], benign[benign_idx, 1],
cmap="Blues", label="benign", alpha=0.35, s=10)
plt.scatter(domains[labels[:, 1], 0], domains[labels[:, 1], 1],
cmap="Greens", label="server", alpha=0.35, s=10)
plt.scatter(domains[labels[:, 0], 0], domains[labels[:, 0], 1],
cmap="Reds", label="client", alpha=0.35, s=10)
return np.concatenate((domains[:1000], domains[1000:2000], domains[2000:3000]), axis=0)
domain_encs, _, labels = dataset.load_or_generate_domains(args.data, args.domain_length)
idx = np.arange(len(labels))
client = labels[:, 0]
server = labels[:, 1]
benign = np.logical_not(np.logical_or(client, server))
print(client.sum(), server.sum(), benign.sum())
idx = np.concatenate((
np.random.choice(idx[client], 1000),
np.random.choice(idx[server], 1000),
np.random.choice(idx[benign], 6000)), axis=0)
benign_idx = np.random.choice(np.arange(6000), 1000)
print(idx.shape)
lls = labels[idx]
for model_name, embd in dfs:
logger.info(f"plot embedding for {model_name}")
visualize.plot_clf()
embd = embd[idx]
points = vis2(embd, lls)
# np.savetxt("{}_{}.csv".format(args.output_prefix, model_name), points, delimiter=",")
visualize.plot_save("{}_{}.pdf".format(args.output_prefix, model_name))
def main_beta():
domain_val, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.data,
args.domain_length,
args.window)
path, model_prefix = os.path.split(os.path.normpath(args.model_path))
print(path, model_prefix)
try:
curves = joblib.load(f"{path}/curves.joblib")
logger.info(f"load file {path}/curves.joblib successfully")
except Exception:
curves = {}
logger.info(f"currently {len(curves)} models in file: {curves.keys()}")
curves[model_prefix] = {"all": {}}
domains = domain_val.value.reshape(-1, 40)
domains = np.apply_along_axis(lambda d: dataset.decode_domain(d), 1, domains)
def load_df(res):
df_server = None
data = {
"names": name_val, "client_pred": res["client_pred"].flatten(),
"hits_vt": hits_vt, "hits_trusted": hits_trusted,
}
if "server_pred" in res:
server = res["server_pred"] if len(res["server_pred"].shape) == 2 else res["server_pred"].max(axis=1)
val = server_val.value.max(axis=1)
data["server_pred"] = server.flatten()
data["server_val"] = val.flatten()
2017-11-04 17:58:21 +01:00
if res["server_pred"].flatten().shape == server_val.value.flatten().shape:
df_server = pd.DataFrame(data={
"server_pred": res["server_pred"].flatten(),
"domain": domains,
"server_val": server_val.value.flatten()
})
2017-11-04 17:58:21 +01:00
res = pd.DataFrame(data=data)
res["client_val"] = np.logical_or(res.hits_vt == 1.0, res.hits_trusted >= 3)
2017-11-04 17:58:21 +01:00
return res, df_server
logger.info(f"load results from {args.model_path}")
res = dataset.load_predictions(args.model_path)
model_keys = sorted(filter(lambda x: x.startswith("clf"), res.keys()), key=lambda x: int(x[4:-3]))
client_preds = []
server_preds = []
server_flow_preds = []
client_user_preds = []
server_user_preds = []
server_domain_preds = []
server_domain_avg_preds = []
for model_name in model_keys:
logger.info(f"load model {model_name}")
df, df_server = load_df(res[model_name])
client_preds.append(df.client_pred.as_matrix())
if "server_val" in df.columns:
server_preds.append(df.server_pred.as_matrix())
if df_server is not None:
logger.info(f" group servers")
server_flow_preds.append(df_server.server_pred.as_matrix())
df_domain = df_server.groupby(df_server.domain).max()
server_domain_preds.append(df_domain.server_pred.as_matrix())
df_domain_avg = df_server.groupby(df_server.domain).rolling(10).mean()
server_domain_avg_preds.append(df_domain_avg.server_pred.as_matrix())
curves[model_prefix][model_name] = confusion_matrix(df.client_val.as_matrix(),
df.client_pred.as_matrix().round())
logger.info(f" group users")
df_user = df.groupby(df.names).max()
client_user_preds.append(df_user.client_pred.as_matrix())
if "server_val" in df.columns:
server_user_preds.append(df_user.server_pred.as_matrix())
logger.info("compute client curves")
curves[model_prefix]["all"]["client_window_prc"] = visualize.calc_pr_mean(df.client_val.as_matrix(), client_preds)
curves[model_prefix]["all"]["client_window_roc"] = visualize.calc_roc_mean(df.client_val.as_matrix(), client_preds)
curves[model_prefix]["all"]["client_user_prc"] = visualize.calc_pr_mean(df_user.client_val.as_matrix(),
client_user_preds)
curves[model_prefix]["all"]["client_user_roc"] = visualize.calc_roc_mean(df_user.client_val.as_matrix(),
client_user_preds)
if "server_val" in df.columns:
logger.info("compute server curves")
curves[model_prefix]["all"]["server_window_prc"] = visualize.calc_pr_mean(df.server_val.as_matrix(),
server_preds)
curves[model_prefix]["all"]["server_window_roc"] = visualize.calc_roc_mean(df.server_val.as_matrix(),
server_preds)
curves[model_prefix]["all"]["server_user_prc"] = visualize.calc_pr_mean(df_user.server_val.as_matrix(),
server_user_preds)
curves[model_prefix]["all"]["server_user_roc"] = visualize.calc_roc_mean(df_user.server_val.as_matrix(),
server_user_preds)
if df_server is not None:
logger.info("compute server flow curves")
curves[model_prefix]["all"]["server_flow_prc"] = visualize.calc_pr_mean(df_server.server_val.as_matrix(),
server_flow_preds)
curves[model_prefix]["all"]["server_flow_roc"] = visualize.calc_roc_mean(df_server.server_val.as_matrix(),
server_flow_preds)
curves[model_prefix]["all"]["server_domain_prc"] = visualize.calc_pr_mean(df_domain.server_val.as_matrix(),
server_domain_preds)
curves[model_prefix]["all"]["server_domain_roc"] = visualize.calc_roc_mean(df_domain.server_val.as_matrix(),
server_domain_preds)
curves[model_prefix]["all"]["server_domain_avg_prc"] = visualize.calc_pr_mean(
df_domain_avg.server_val.as_matrix(),
server_domain_avg_preds)
curves[model_prefix]["all"]["server_domain_avg_roc"] = visualize.calc_roc_mean(
df_domain_avg.server_val.as_matrix(),
server_domain_avg_preds)
2017-09-28 12:23:22 +02:00
joblib.dump(curves, f"{path}/curves.joblib")
import matplotlib
2017-09-28 12:23:22 +02:00
matplotlib.use("agg")
import matplotlib.pyplot as plt
2017-11-04 17:58:21 +01:00
2017-09-28 12:23:22 +02:00
def plot_overall_result():
path, model_prefix = os.path.split(os.path.normpath(args.model_path))
exists_or_make_path(f"{path}/figs/curves/")
2017-09-28 12:23:22 +02:00
try:
results = joblib.load(f"{path}/curves.joblib")
logger.info("curves successfully loaded")
2017-09-28 12:23:22 +02:00
except Exception:
results = {}
x = np.linspace(0, 1, 10000)
for vis in ["client_window_prc", "client_window_roc", "client_user_prc", "client_user_roc",
"server_window_prc", "server_window_roc", "server_user_prc", "server_user_roc",
"server_flow_prc", "server_flow_roc", "server_domain_prc", "server_domain_roc"]:
logger.info(f"plot {vis}")
visualize.plot_clf()
for model_key in results.keys():
if vis not in results[model_key]["all"]:
continue
if "final" in model_key and vis.startswith("server_flow"):
continue
ys_mean, ys_std, ys = results[model_key]["all"][vis]
plt.plot(x, ys_mean, label=f"{model_key} - {np.mean(ys_mean):5.4} ({np.mean(ys_std):4.3})")
2017-09-28 12:23:22 +02:00
plt.fill_between(x, ys_mean - ys_std, ys_mean + ys_std, alpha=0.2)
if vis.endswith("prc"):
plt.xlabel('Recall')
plt.ylabel('Precision')
else:
plt.plot(x, x, label="random classifier", ls="--", c=".3", alpha=0.4)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.xscale('log')
plt.ylim([0.0, 1.0])
plt.xlim([0.0, 1.0])
visualize.plot_legend()
visualize.plot_save(f"{path}/figs/curves/{vis}_all.pdf")
return
for vis in ["client_window_prc", "client_window_roc", "client_user_prc", "client_user_roc",
"server_window_prc", "server_window_roc", "server_user_prc", "server_user_roc",
"server_flow_prc", "server_flow_roc", "server_domain_prc", "server_domain_roc"]:
logger.info(f"plot {vis}")
visualize.plot_clf()
for model_key in results.keys():
if vis not in results[model_key]["all"]:
continue
if "final" in model_key and vis.startswith("server_flow"):
continue
_, _, ys = results[model_key]["all"][vis]
for y in ys:
plt.plot(x, y, label=f"{model_key} - {np.mean(y):5.4}")
if vis.endswith("prc"):
plt.xlabel('Recall')
plt.ylabel('Precision')
else:
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.xscale('log')
plt.ylim([0.0, 1.0])
plt.xlim([0.0, 1.0])
visualize.plot_legend()
visualize.plot_save(f"{path}/figs/Appendices/{model_key}_{vis}.pdf")
def main_stats():
path, model_prefix = os.path.split(os.path.normpath(args.output_prefix))
for time in ("current", "future"):
df = dataset.get_user_flow_data(f"data/{time}Data.csv.gz")
df["clientlabel"] = np.logical_or(df.virusTotalHits > 3, df.trustedHits > 0)
# df_user = df.groupby(df.user_hash).max()
# df_server = df.groupby(df.domain).max()
# len(df)
# df.clientlabel.sum()
# df.serverLabel.sum()
for col in ["duration", "bytes_down", "bytes_up"]:
# visualize.plot_clf()
plt.clf()
plt.hist(df[col])
visualize.plot_save(f"{path}/figs/hist_{time}_{col}.pdf")
print(".")
# visualize.plot_clf()
plt.clf()
plt.hist(np.log1p(df[col]))
visualize.plot_save(f"{path}/figs/hist_{time}_norm_{col}.pdf")
print("-")
def main_stats2():
import joblib
res = joblib.load("results/variance_test_hyper/curves.joblib")
for vis in ["client_window_prc", "client_window_roc", "client_user_prc", "client_user_roc",
"server_window_prc", "server_window_roc", "server_user_prc", "server_user_roc",
"server_flow_prc", "server_flow_roc", "server_domain_prc", "server_domain_roc",
"server_domain_avg_prc", "server_domain_avg_roc"]:
tab = []
for m, r in res.items():
if vis not in r: continue
tab.append(r["all"][vis][2].mean(axis=1))
if not tab: continue
df = pd.DataFrame(data=np.vstack(tab).T, columns=list(res.keys()),
index=range(1, 21))
df.to_csv(f"{vis}.csv")
print(f"% {vis}")
print(df.round(4).to_latex())
print()
2017-11-04 17:58:21 +01:00
def main():
if "train" == args.mode:
2017-07-07 16:48:10 +02:00
main_train()
2017-09-28 12:23:22 +02:00
if "retrain" == args.mode:
main_retrain()
if "hyperband" == args.mode:
main_hyperband(args.data, args.domain_length, args.window, args.model_type, args.hyperband_results,
args.hyper_max_iter)
if "test" == args.mode:
2017-07-07 16:48:10 +02:00
main_test()
if "beta" == args.mode:
main_beta()
if "all_beta" == args.mode:
plot_overall_result()
if "embedding" == args.mode:
main_visualize_all_embds()
if __name__ == "__main__":
main()