remove input shape of first conv layer in networks because unnecessary
add selu activation to deeper network designs
This commit is contained in:
parent
6a47b5f245
commit
fbe6d6a584
@ -52,8 +52,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
|||||||
# CNN processing a small slides of flow windows
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(cnn_dims,
|
y = Conv1D(cnn_dims,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
activation='relu',
|
activation='relu'
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
# remove temporal dimension by global max pooling
|
||||||
y = GlobalMaxPooling1D()(y)
|
y = GlobalMaxPooling1D()(y)
|
||||||
y = Dropout(cnnDropout)(y)
|
y = Dropout(cnnDropout)(y)
|
||||||
@ -78,8 +77,7 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
|||||||
# CNN processing a small slides of flow windows
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(cnn_dims,
|
y = Conv1D(cnn_dims,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
activation='relu',
|
activation='relu')(merged)
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
# remove temporal dimension by global max pooling
|
||||||
y = GlobalMaxPooling1D()(y)
|
y = GlobalMaxPooling1D()(y)
|
||||||
y = Dropout(dropout)(y)
|
y = Dropout(dropout)(y)
|
||||||
|
@ -1,11 +1,26 @@
|
|||||||
|
from collections import namedtuple
|
||||||
|
|
||||||
import keras
|
import keras
|
||||||
|
from keras.activations import elu
|
||||||
from keras.engine import Input, Model as KerasModel
|
from keras.engine import Input, Model as KerasModel
|
||||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, TimeDistributed, MaxPool1D, \
|
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, GlobalMaxPooling1D, MaxPool1D, \
|
||||||
GlobalAveragePooling1D
|
TimeDistributed
|
||||||
|
|
||||||
import dataset
|
import dataset
|
||||||
|
|
||||||
from collections import namedtuple
|
|
||||||
|
def selu(x):
|
||||||
|
"""Scaled Exponential Linear Unit. (Klambauer et al., 2017)
|
||||||
|
# Arguments
|
||||||
|
x: A tensor or variable to compute the activation function for.
|
||||||
|
# References
|
||||||
|
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
|
||||||
|
# copied from keras.io
|
||||||
|
"""
|
||||||
|
alpha = 1.6732632423543772848170429916717
|
||||||
|
scale = 1.0507009873554804934193349852946
|
||||||
|
return scale * elu(x, alpha)
|
||||||
|
|
||||||
|
|
||||||
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
||||||
|
|
||||||
@ -13,9 +28,9 @@ Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server
|
|||||||
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5):
|
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5):
|
||||||
x = y = Input(shape=(input_length,))
|
x = y = Input(shape=(input_length,))
|
||||||
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
||||||
y = Conv1D(filter_size, kernel_size=5, activation='relu')(y)
|
y = Conv1D(filter_size, kernel_size=5, activation=selu)(y)
|
||||||
y = Conv1D(filter_size, kernel_size=3, activation='relu')(y)
|
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
|
||||||
y = Conv1D(filter_size, kernel_size=3, activation='relu')(y)
|
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
|
||||||
y = GlobalAveragePooling1D()(y)
|
y = GlobalAveragePooling1D()(y)
|
||||||
y = Dense(hidden_dims, activation="relu")(y)
|
y = Dense(hidden_dims, activation="relu")(y)
|
||||||
return KerasModel(x, y)
|
return KerasModel(x, y)
|
||||||
@ -28,17 +43,17 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
|||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||||
# CNN processing a small slides of flow windows
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same",
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same",
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same")(y)
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same")(y)
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same")(y)
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same")(y)
|
||||||
# remove temporal dimension by global max pooling
|
# remove temporal dimension by global max pooling
|
||||||
y = GlobalMaxPooling1D()(y)
|
y = GlobalMaxPooling1D()(y)
|
||||||
y = Dropout(cnnDropout)(y)
|
y = Dropout(cnnDropout)(y)
|
||||||
y = Dense(dense_dim, activation='relu')(y)
|
y = Dense(dense_dim, activation=selu)(y)
|
||||||
y = Dense(dense_dim // 2, activation='relu')(y)
|
y = Dense(dense_dim // 2, activation=selu)(y)
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
||||||
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
||||||
|
|
||||||
@ -49,22 +64,35 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
|||||||
dense_dim, cnn, model_output="both"):
|
dense_dim, cnn, model_output="both"):
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||||
y = Dense(dense_dim, activation="relu")(merged)
|
y = Dense(dense_dim, activation="relu")(merged)
|
||||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
||||||
|
merged = keras.layers.concatenate([merged, y], -1)
|
||||||
# CNN processing a small slides of flow windows
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same",
|
y = Conv1D(filters=cnn_dims,
|
||||||
input_shape=(window_size, domain_features + flow_features))(y)
|
kernel_size=kernel_size,
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
activation=selu,
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same")(y)
|
padding="same",
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same")(y)
|
y = MaxPool1D(pool_size=3,
|
||||||
|
strides=1)(y)
|
||||||
|
y = Conv1D(filters=cnn_dims,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
activation=selu,
|
||||||
|
padding="same")(y)
|
||||||
|
y = MaxPool1D(pool_size=3,
|
||||||
|
strides=1)(y)
|
||||||
|
y = Conv1D(filters=cnn_dims,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
activation=selu,
|
||||||
|
padding="same")(y)
|
||||||
# remove temporal dimension by global max pooling
|
# remove temporal dimension by global max pooling
|
||||||
y = GlobalMaxPooling1D()(y)
|
y = GlobalMaxPooling1D()(y)
|
||||||
y = Dropout(dropout)(y)
|
y = Dropout(dropout)(y)
|
||||||
y = Dense(dense_dim, activation='relu')(y)
|
y = Dense(dense_dim,
|
||||||
|
activation=selu,
|
||||||
|
name="dense_client")(y)
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||||
|
Loading…
Reference in New Issue
Block a user