move vocab_size into implementation (not user dependent)
This commit is contained in:
@@ -1,6 +1,5 @@
|
||||
import keras.backend as K
|
||||
|
||||
import dataset
|
||||
from . import pauls_networks
|
||||
from . import renes_networks
|
||||
|
||||
@@ -9,7 +8,6 @@ def get_models_by_params(params: dict):
|
||||
# decomposing param section
|
||||
# mainly embedding model
|
||||
network_type = params.get("type")
|
||||
vocab_size = len(dataset.get_character_dict()) + 1
|
||||
embedding_size = params.get("embedding_size")
|
||||
input_length = params.get("input_length")
|
||||
filter_embedding = params.get("filter_embedding")
|
||||
@@ -26,8 +24,8 @@ def get_models_by_params(params: dict):
|
||||
dense_dim = params.get("dense_main")
|
||||
# create models
|
||||
networks = renes_networks if network_type == "rene" else pauls_networks
|
||||
embedding_model = networks.get_embedding(vocab_size, embedding_size, input_length,
|
||||
filter_embedding, kernel_embedding, hidden_embedding, drop_out=dropout)
|
||||
embedding_model = networks.get_embedding(embedding_size, input_length, filter_embedding, kernel_embedding,
|
||||
hidden_embedding, drop_out=dropout)
|
||||
|
||||
predict_model = networks.get_model(dropout, flow_features, domain_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model)
|
||||
|
@@ -2,6 +2,8 @@ import keras
|
||||
from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
|
||||
|
||||
import dataset
|
||||
|
||||
best_config = {
|
||||
"type": "paul",
|
||||
"batch_size": 64,
|
||||
@@ -24,11 +26,10 @@ best_config = {
|
||||
}
|
||||
|
||||
|
||||
def get_embedding(vocab_size, embedding_size, input_length,
|
||||
filters, kernel_size, hidden_dims, drop_out=0.5):
|
||||
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
||||
y = Conv1D(filter_size, kernel_size, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
|
@@ -3,11 +3,12 @@ from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, TimeDistributed, MaxPool1D, \
|
||||
GlobalAveragePooling1D
|
||||
|
||||
import dataset
|
||||
|
||||
def get_embedding(vocab_size, embedding_size, input_length,
|
||||
filter_size, kernel_size, hidden_dims, drop_out=0.5):
|
||||
|
||||
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
||||
y = Conv1D(filter_size, kernel_size=5, activation='relu')(y)
|
||||
y = Conv1D(filter_size, kernel_size=3, activation='relu')(y)
|
||||
y = Conv1D(filter_size, kernel_size=3, activation='relu')(y)
|
||||
|
Reference in New Issue
Block a user