replace softmax by sigmoid in final layer, also adjust dataset for that
This commit is contained in:
parent
b0da2de0ea
commit
d97785f646
@ -6,7 +6,6 @@ from multiprocessing import Pool
|
||||
import h5py
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from keras.utils import np_utils
|
||||
from tqdm import tqdm
|
||||
|
||||
logger = logging.getLogger('logger')
|
||||
@ -119,7 +118,7 @@ def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10):
|
||||
client_tr[:pos_idx.shape[-1]] = 1.0
|
||||
server_tr = server_tr[idx]
|
||||
|
||||
client_tr = np_utils.to_categorical(client_tr, 2)
|
||||
# client_tr = np_utils.to_categorical(client_tr, 2)
|
||||
|
||||
return domain_tr, flow_tr, client_tr, server_tr
|
||||
|
||||
|
15
main.py
15
main.py
@ -7,7 +7,6 @@ import pandas as pd
|
||||
import tensorflow as tf
|
||||
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping
|
||||
from keras.models import load_model
|
||||
from keras.utils import np_utils
|
||||
from sklearn.utils import class_weight
|
||||
|
||||
import arguments
|
||||
@ -98,8 +97,8 @@ def main_hyperband():
|
||||
|
||||
|
||||
def get_custom_class_weights(client_tr, server_tr):
|
||||
client = client_tr.value.argmax(1) if type(client_tr) != np.ndarray else client_tr.argmax(1)
|
||||
server = server_tr.value.argmax(1) if type(server_tr) != np.ndarray else server_tr.argmax(1)
|
||||
client = client_tr.value if type(client_tr) != np.ndarray else client_tr
|
||||
server = server_tr.value if type(server_tr) != np.ndarray else server_tr
|
||||
client_class_weight = class_weight.compute_class_weight('balanced', np.unique(client), client)
|
||||
server_class_weight = class_weight.compute_class_weight('balanced', np.unique(server), server)
|
||||
return {
|
||||
@ -157,10 +156,10 @@ def main_train(param=None):
|
||||
logger.info("compile model")
|
||||
custom_metrics = models.get_metric_functions()
|
||||
model.compile(optimizer='adam',
|
||||
loss='categorical_crossentropy',
|
||||
loss='binary_crossentropy',
|
||||
metrics=['accuracy'] + custom_metrics)
|
||||
|
||||
server_tr = np_utils.to_categorical(np.max(server_windows_tr, axis=1), 2)
|
||||
server_tr = np.max(server_windows_tr, axis=1)
|
||||
|
||||
if args.class_weights:
|
||||
logger.info("class weights: compute custom weights")
|
||||
@ -261,10 +260,10 @@ def main_new_model():
|
||||
logger.info("compile model")
|
||||
custom_metrics = models.get_metric_functions()
|
||||
model.compile(optimizer='adam',
|
||||
loss='categorical_crossentropy',
|
||||
loss='binary_crossentropy',
|
||||
metrics=['accuracy'] + custom_metrics)
|
||||
|
||||
server_tr = np_utils.to_categorical(np.max(server_windows_tr, axis=1), 2)
|
||||
server_tr = np.max(server_windows_tr, axis=1)
|
||||
|
||||
if args.class_weights:
|
||||
logger.info("class weights: compute custom weights")
|
||||
@ -274,7 +273,7 @@ def main_new_model():
|
||||
logger.info("class weights: set default")
|
||||
custom_class_weights = None
|
||||
logger.info("start training")
|
||||
server_tr = np.stack(np_utils.to_categorical(s, 2) for s in server_windows_tr)
|
||||
server_tr = np.expand_dims(server_windows_tr, 2)
|
||||
model.fit([domain_tr, flow_tr],
|
||||
[client_tr, server_tr],
|
||||
batch_size=args.batch_size,
|
||||
|
@ -43,7 +43,6 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
# TODO: add more layers?
|
||||
y = Conv1D(cnn_dims,
|
||||
kernel_size,
|
||||
activation='relu',
|
||||
@ -52,8 +51,8 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
y1 = Dense(1, activation='sigmoid', name="client")(y)
|
||||
y2 = Dense(1, activation='sigmoid', name="server")(y)
|
||||
|
||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
||||
|
||||
@ -64,7 +63,7 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
|
||||
y2 = Dense(2, activation="softmax", name="server")(encoded)
|
||||
y2 = Dense(1, activation="sigmoid", name="server")(encoded)
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows, y2], -1)
|
||||
|
||||
y = Conv1D(cnn_dims,
|
||||
@ -76,7 +75,7 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
||||
y = Dropout(dropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y1 = Dense(1, activation='sigmoid', name="client")(y)
|
||||
model = Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
||||
|
||||
return model
|
||||
|
@ -9,13 +9,9 @@ def get_embedding(vocab_size, embedding_size, input_length,
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Conv1D(filter_size, kernel_size=5, activation='relu')(y)
|
||||
# NOTE: max pooling destroys information flow for embedding
|
||||
# y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(filter_size, kernel_size=3, activation='relu')(y)
|
||||
# y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(filter_size, kernel_size=3, activation='relu')(y)
|
||||
y = GlobalAveragePooling1D()(y)
|
||||
# y = Dropout(drop_out)(y)
|
||||
y = Dense(hidden_dims, activation="relu")(y)
|
||||
return Model(x, y)
|
||||
|
||||
@ -38,8 +34,8 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y = Dense(dense_dim // 2, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
y1 = Dense(1, activation='sigmoid', name="client")(y)
|
||||
y2 = Dense(1, activation='sigmoid', name="server")(y)
|
||||
|
||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
||||
|
||||
@ -50,7 +46,7 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
|
||||
y2 = Dense(2, activation="softmax", name="server")(encoded)
|
||||
y2 = Dense(1, activation="sigmoid", name="server")(encoded)
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows, y2], -1)
|
||||
|
||||
y = Conv1D(cnn_dims,
|
||||
@ -62,7 +58,7 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
||||
y = Dropout(dropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y1 = Dense(1, activation='sigmoid', name="client")(y)
|
||||
model = Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
||||
|
||||
return model
|
||||
|
Loading…
Reference in New Issue
Block a user