refactoring and adding standard files for .gitignore and .keep in data
This commit is contained in:
parent
87b927cdc9
commit
be273d9247
99
.gitignore
vendored
Normal file
99
.gitignore
vendored
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
env/
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
.cache/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*,cover
|
||||||
|
.hypothesis/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# IPython Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# celery beat schedule file
|
||||||
|
celerybeat-schedule
|
||||||
|
|
||||||
|
# dotenv
|
||||||
|
.env
|
||||||
|
|
||||||
|
# virtualenv
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# intelliJ
|
||||||
|
.idea/
|
||||||
|
|
||||||
|
# Apple?
|
||||||
|
.DS_Store
|
||||||
|
|
||||||
|
# data
|
||||||
|
*.tif
|
@ -17,7 +17,7 @@ import random
|
|||||||
from keras.models import model_from_json
|
from keras.models import model_from_json
|
||||||
import time
|
import time
|
||||||
import re
|
import re
|
||||||
import mongoDBConnector as mongoDBConnector
|
# import mongoDBConnector as mongoDBConnector
|
||||||
import stackedNeuralModels as stackedNeuralModels
|
import stackedNeuralModels as stackedNeuralModels
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
@ -1,20 +1,199 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
import joblib
|
import string
|
||||||
|
|
||||||
import keras
|
import keras
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import pandas as pd
|
||||||
from keras.layers import Dense, Dropout, Conv1D, GlobalMaxPooling1D, Reshape
|
from keras.layers import Dense, Dropout, Conv1D, GlobalMaxPooling1D, Reshape, Embedding, Input, Activation
|
||||||
from keras.layers import Input
|
|
||||||
from keras.models import Model
|
from keras.models import Model
|
||||||
from keras.utils import np_utils
|
from keras.utils import np_utils
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
import stackedNeuralModels as stackedNeuralModels
|
|
||||||
|
|
||||||
config = tf.ConfigProto(log_device_placement=True)
|
# config = tf.ConfigProto(log_device_placement=True)
|
||||||
config.gpu_options.per_process_gpu_memory_fraction = 0.5
|
# config.gpu_options.per_process_gpu_memory_fraction = 0.5
|
||||||
config.gpu_options.allow_growth = True
|
# config.gpu_options.allow_growth = True
|
||||||
session = tf.Session(config=config)
|
# session = tf.Session(config=config)
|
||||||
|
|
||||||
|
|
||||||
|
def get_character_dict():
|
||||||
|
return dict((char, idx) for (idx, char) in
|
||||||
|
enumerate(string.ascii_lowercase + string.punctuation))
|
||||||
|
|
||||||
|
|
||||||
|
def get_cnn(vocabSize, embeddingSize, input_length, filters, kernel_size,
|
||||||
|
hidden_dims, drop_out):
|
||||||
|
x = y = Input(shape=(input_length,))
|
||||||
|
y = Embedding(input_dim=vocabSize, output_dim=embeddingSize)(y)
|
||||||
|
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||||
|
y = GlobalMaxPooling1D()(y)
|
||||||
|
y = Dense(hidden_dims)(y)
|
||||||
|
y = Dropout(drop_out)(y)
|
||||||
|
y = Activation('relu')(y)
|
||||||
|
return Model(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
||||||
|
maxLengthInSeconds=300):
|
||||||
|
# print('maxLength: ' + str(maxLengthInSeconds))
|
||||||
|
maxMilliSeconds = maxLengthInSeconds * 1000
|
||||||
|
outDomainLists = []
|
||||||
|
outDFFrames = []
|
||||||
|
if overlapping == False:
|
||||||
|
numBlocks = int(np.ceil(float(len(dataFrame)) / float(windowSize)))
|
||||||
|
userIDs = np.arange(len(dataFrame))
|
||||||
|
for blockID in np.arange(numBlocks):
|
||||||
|
curIDs = userIDs[(blockID * windowSize):((blockID + 1) * windowSize)]
|
||||||
|
# print(curIDs)
|
||||||
|
useData = dataFrame.iloc[curIDs]
|
||||||
|
curDomains = useData['domain']
|
||||||
|
if maxLengthInSeconds != -1:
|
||||||
|
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
||||||
|
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
||||||
|
if len(underTimeOutIDs) != len(curIDs):
|
||||||
|
curIDs = curIDs[underTimeOutIDs]
|
||||||
|
useData = dataFrame.iloc[curIDs]
|
||||||
|
curDomains = useData['domain']
|
||||||
|
outDomainLists.append(list(curDomains))
|
||||||
|
outDFFrames.append(useData)
|
||||||
|
else:
|
||||||
|
numBlocks = len(dataFrame) + 1 - windowSize
|
||||||
|
userIDs = np.arange(len(dataFrame))
|
||||||
|
for blockID in np.arange(numBlocks):
|
||||||
|
curIDs = userIDs[blockID:blockID + windowSize]
|
||||||
|
# print(curIDs)
|
||||||
|
useData = dataFrame.iloc[curIDs]
|
||||||
|
curDomains = useData['domain']
|
||||||
|
if maxLengthInSeconds != -1:
|
||||||
|
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
||||||
|
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
||||||
|
if len(underTimeOutIDs) != len(curIDs):
|
||||||
|
curIDs = curIDs[underTimeOutIDs]
|
||||||
|
useData = dataFrame.iloc[curIDs]
|
||||||
|
curDomains = useData['domain']
|
||||||
|
outDomainLists.append(list(curDomains))
|
||||||
|
outDFFrames.append(useData)
|
||||||
|
return (outDomainLists, outDFFrames)
|
||||||
|
|
||||||
|
|
||||||
|
def getFeatureVecForDomain(domain, characterDict, maxLen=40):
|
||||||
|
curFeature = np.zeros([maxLen, ])
|
||||||
|
for j in range(np.min([len(domain), maxLen])):
|
||||||
|
# print(j)
|
||||||
|
curCharacter = domain[-j]
|
||||||
|
if curCharacter in characterDict:
|
||||||
|
curFeature[j] = characterDict[curCharacter]
|
||||||
|
return curFeature
|
||||||
|
|
||||||
|
|
||||||
|
def getFlowFeatures(curDataLine):
|
||||||
|
useKeys = ['duration', 'bytes_down', 'bytes_up']
|
||||||
|
curFeature = np.zeros([len(useKeys), ])
|
||||||
|
for i in range(len(useKeys)):
|
||||||
|
curKey = useKeys[i]
|
||||||
|
try:
|
||||||
|
curFeature[i] = np.log1p(curDataLine[curKey]).astype(float)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return curFeature
|
||||||
|
|
||||||
|
|
||||||
|
def getCiscoFeatures(curDataLine, urlSIPDict):
|
||||||
|
numCiscoFeatures = 30
|
||||||
|
try:
|
||||||
|
ciscoFeatures = urlSIPDict[str(curDataLine['domain']) + str(curDataLine['server_ip'])]
|
||||||
|
# print('cisco features: ' + str(ciscoFeatures))
|
||||||
|
# log transform
|
||||||
|
ciscoFeatures = np.log1p(ciscoFeatures).astype(float)
|
||||||
|
# print('log transformed: ' + str(ciscoFeatures))
|
||||||
|
return ciscoFeatures.ravel()
|
||||||
|
except:
|
||||||
|
return np.zeros([numCiscoFeatures, ]).ravel()
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataset_from_flows(user_flow_df, char_dict, maxLen, threshold=3, windowSize=10):
|
||||||
|
domainLists = []
|
||||||
|
dfLists = []
|
||||||
|
print("get chunks from user data frames")
|
||||||
|
for i, user_flow in enumerate(get_flow_per_user(user_flow_df)):
|
||||||
|
(domainListsTmp, dfListsTmp) = get_user_chunks(user_flow, windowSize=windowSize,
|
||||||
|
overlapping=False, maxLengthInSeconds=maxLengthInSeconds)
|
||||||
|
domainLists += domainListsTmp
|
||||||
|
dfLists += dfListsTmp
|
||||||
|
if i >= 10:
|
||||||
|
break
|
||||||
|
|
||||||
|
print("create training dataset")
|
||||||
|
return create_dataset_from_lists(
|
||||||
|
domainLists=domainLists, dfLists=dfLists, charachterDict=char_dict,
|
||||||
|
maxLen=maxLen, threshold=threshold,
|
||||||
|
flagUseCiscoFeatures=False, urlSIPDIct=dict(),
|
||||||
|
windowSize=windowSize)
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataset_from_lists(domainLists, dfLists, charachterDict, maxLen, threshold=3,
|
||||||
|
flagUseCiscoFeatures=False, urlSIPDIct=dict(),
|
||||||
|
windowSize=10):
|
||||||
|
if 'hits' in dfLists[0].keys():
|
||||||
|
hitName = 'hits'
|
||||||
|
elif 'virusTotalHits' in dfLists[0].keys():
|
||||||
|
hitName = 'virusTotalHits'
|
||||||
|
numFlowFeatures = 3
|
||||||
|
numCiscoFeatures = 30
|
||||||
|
numFeatures = numFlowFeatures
|
||||||
|
if flagUseCiscoFeatures:
|
||||||
|
numFeatures += numCiscoFeatures
|
||||||
|
outputFeatures = []
|
||||||
|
label = []
|
||||||
|
hits = []
|
||||||
|
trainNames = []
|
||||||
|
for i in range(windowSize):
|
||||||
|
outputFeatures.append(np.zeros([len(domainLists), maxLen]))
|
||||||
|
outputFeatures.append(np.zeros([len(domainLists), numFeatures]))
|
||||||
|
|
||||||
|
for i in tqdm(np.arange(len(domainLists)), miniters=10):
|
||||||
|
curCounter = 0
|
||||||
|
# print('len domainList: ' + str(len(domainLists[i])))
|
||||||
|
# print('len df: ' + str(len(dfLists[i])))
|
||||||
|
for j in range(np.min([windowSize, len(domainLists[i])])):
|
||||||
|
outputFeatures[curCounter][i, :] = getFeatureVecForDomain(domainLists[i][j], charachterDict, maxLen)
|
||||||
|
curCounter += 1
|
||||||
|
if flagUseCiscoFeatures:
|
||||||
|
outputFeatures[curCounter][i, 0:numFlowFeatures] = getFlowFeatures(dfLists[i].iloc[j])
|
||||||
|
outputFeatures[curCounter][i, numFlowFeatures:] = getCiscoFeatures(dfLists[i].iloc[j], urlSIPDIct)
|
||||||
|
else:
|
||||||
|
outputFeatures[curCounter][i, :] = getFlowFeatures(dfLists[i].iloc[j])
|
||||||
|
curCounter += 1
|
||||||
|
curLabel = 0.0
|
||||||
|
if np.max(dfLists[i][hitName]) >= threshold:
|
||||||
|
curLabel = 1.0
|
||||||
|
elif np.max(dfLists[i][hitName]) == -1:
|
||||||
|
curLabel = -1.0
|
||||||
|
elif np.max(dfLists[i][hitName]) > 0 and np.max(dfLists[i][hitName]) < threshold:
|
||||||
|
curLabel = -2.0
|
||||||
|
label.append(curLabel)
|
||||||
|
hits.append(np.max(dfLists[i][hitName]))
|
||||||
|
trainNames.append(np.unique(dfLists[i]['user_hash']))
|
||||||
|
return (outputFeatures, np.array(label), np.array(hits), np.array(trainNames))
|
||||||
|
|
||||||
|
|
||||||
|
def get_user_flow_data():
|
||||||
|
# load train and test data from joblib
|
||||||
|
# created with createTrainDataMultipleTaskLearning.py
|
||||||
|
# rk: changed to csv file
|
||||||
|
trainDFs = pd.read_csv("data/rk_data.csv.gz")
|
||||||
|
trainDFs.drop("Unnamed: 0", 1, inplace=True)
|
||||||
|
trainDFs.set_index(keys=['user_hash'], drop=False, inplace=True)
|
||||||
|
users = trainDFs['user_hash'].unique().tolist()
|
||||||
|
u0 = trainDFs.loc[trainDFs.user_hash == users[0]]
|
||||||
|
return trainDFs
|
||||||
|
|
||||||
|
|
||||||
|
def get_flow_per_user(df):
|
||||||
|
users = df['user_hash'].unique().tolist()
|
||||||
|
for user in users:
|
||||||
|
yield df.loc[df.user_hash == user]
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# parameter
|
# parameter
|
||||||
@ -39,51 +218,28 @@ if __name__ == "__main__":
|
|||||||
maxLengthInSeconds = -1
|
maxLengthInSeconds = -1
|
||||||
timesNeg = -1
|
timesNeg = -1
|
||||||
|
|
||||||
trainDataPath = '/mnt/projekte/pmlcluster/cisco/trainData/equalClass/currentData.joblib'
|
char_dict = get_character_dict()
|
||||||
testDataPath = '/mnt/projekte/pmlcluster/cisco/trainData/equalClass/futureData.joblib'
|
user_flow_df = get_user_flow_data()
|
||||||
|
|
||||||
if 'characterDict' not in locals():
|
print("create training dataset")
|
||||||
characterDictPath = 'trainData/characterIDDict.joblib'
|
(X_tr, y_tr, hits_tr, names_tr) = create_dataset_from_flows(
|
||||||
characterDict = joblib.load(characterDictPath)['characterIDDict']
|
user_flow_df, char_dict,
|
||||||
|
maxLen=maxLen, threshold=threshold, windowSize=windowSize)
|
||||||
|
|
||||||
# load train and test data from joblib
|
pos_idx = np.where(y_tr == 1.0)[0]
|
||||||
# created with createTrainDataMultipleTaskLearning.py
|
neg_idx = np.where(y_tr == 0.0)[0]
|
||||||
if 'trainDFs' not in locals():
|
|
||||||
tmpLoad = joblib.load(trainDataPath)
|
|
||||||
trainDFs = tmpLoad['data']
|
|
||||||
|
|
||||||
if 'testDFs' not in locals():
|
use_idx = np.concatenate((pos_idx, neg_idx))
|
||||||
tmpLoad = joblib.load(testDataPath)
|
|
||||||
|
|
||||||
sharedCNNFun = stackedNeuralModels.getCNNWitoutLastLayerFunctional(len(characterDict) + 1, embeddingSize, maxLen,
|
y_tr = y_tr[use_idx]
|
||||||
domainFeatures, kernel_size, domainFeatures, 0.5)
|
# hits_tr = hits_tr[use_idx]
|
||||||
|
# names_tr = names_tr[use_idx]
|
||||||
|
for i in range(len(X_tr)):
|
||||||
|
X_tr[i] = X_tr[i][use_idx]
|
||||||
|
|
||||||
domainLists = []
|
# TODO: WTF? I don't get it...
|
||||||
dfLists = []
|
sharedCNNFun = get_cnn(len(char_dict) + 1, embeddingSize, maxLen,
|
||||||
for i in tqdm(np.arange(len(trainDFs)), miniters=10):
|
domainFeatures, kernel_size, domainFeatures, 0.5)
|
||||||
(domainListsTmp, dfListsTmp) = stackedNeuralModels.getChunksFromUserDataFrame(trainDFs[i],
|
|
||||||
windowSize=windowSize,
|
|
||||||
overlapping=False,
|
|
||||||
maxLengthInSeconds=maxLengthInSeconds)
|
|
||||||
domainLists += domainListsTmp
|
|
||||||
dfLists += dfListsTmp
|
|
||||||
if i == 100:
|
|
||||||
break
|
|
||||||
|
|
||||||
(testData, testLabel, testHits, testNames) = stackedNeuralModels.createTrainData(
|
|
||||||
domainLists=domainLists, dfLists=dfLists, charachterDict=characterDict,
|
|
||||||
maxLen=maxLen, threshold=threshold,
|
|
||||||
flagUseCiscoFeatures=False, urlSIPDIct=dict(),
|
|
||||||
windowSize=windowSize)
|
|
||||||
|
|
||||||
useIDs = np.where(testLabel == 1.0)[0]
|
|
||||||
useIDs = np.concatenate([useIDs, np.where(testLabel == 0.0)[0]])
|
|
||||||
|
|
||||||
testLabel = testLabel[useIDs]
|
|
||||||
testHits = testHits[useIDs]
|
|
||||||
testNames = testNames[useIDs]
|
|
||||||
for i in range(len(testData)):
|
|
||||||
testData[i] = testData[i][useIDs]
|
|
||||||
|
|
||||||
inputList = []
|
inputList = []
|
||||||
encodedList = []
|
encodedList = []
|
||||||
@ -102,7 +258,6 @@ if __name__ == "__main__":
|
|||||||
merged_vector = keras.layers.concatenate(merge_layer_input, axis=-1)
|
merged_vector = keras.layers.concatenate(merge_layer_input, axis=-1)
|
||||||
reshape = Reshape((windowSize, domainFeatures + numFeatures))(merged_vector)
|
reshape = Reshape((windowSize, domainFeatures + numFeatures))(merged_vector)
|
||||||
# add second cnn
|
# add second cnn
|
||||||
|
|
||||||
cnn = Conv1D(filters,
|
cnn = Conv1D(filters,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
activation='relu',
|
activation='relu',
|
||||||
@ -121,7 +276,7 @@ if __name__ == "__main__":
|
|||||||
metrics=['accuracy'])
|
metrics=['accuracy'])
|
||||||
|
|
||||||
epochNumber = 0
|
epochNumber = 0
|
||||||
trainLabel = np_utils.to_categorical(testLabel, 2)
|
trainLabel = np_utils.to_categorical(y_tr, 2)
|
||||||
model.fit(x=testData, y=trainLabel,
|
model.fit(x=X_tr, y=trainLabel, batch_size=128,
|
||||||
epochs=epochNumber + 1, shuffle=True, initial_epoch=epochNumber) # ,
|
epochs=epochNumber + 1, shuffle=True, initial_epoch=epochNumber) # ,
|
||||||
# validation_data=(testData,testLabel))
|
# validation_data=(testData,testLabel))
|
||||||
|
0
data/.keep
Normal file
0
data/.keep
Normal file
@ -1,41 +1,29 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
from keras.models import Sequential
|
|
||||||
from keras.layers import Dense, Activation,LSTM,Embedding,Dropout,Conv1D, GlobalMaxPooling1D, Merge, Reshape, Lambda
|
|
||||||
from keras.layers import Convolution1D
|
|
||||||
import ciscoProcessing as ciscoProcessing
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
|
||||||
import joblib
|
|
||||||
import csv
|
import csv
|
||||||
|
|
||||||
import keras
|
import numpy as np
|
||||||
|
from keras.layers import Dense, Activation, Embedding, Dropout, Conv1D, GlobalMaxPooling1D, Lambda
|
||||||
from keras.layers import Input
|
from keras.layers import Input
|
||||||
from keras.models import Model
|
from keras.models import Model
|
||||||
from keras.utils import np_utils
|
from keras.models import Sequential
|
||||||
|
|
||||||
from sklearn.metrics import precision_recall_curve
|
|
||||||
from sklearn.metrics import auc, roc_curve
|
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import os
|
|
||||||
|
|
||||||
|
|
||||||
def getCiscoFeatures(curDataLine,urlSIPDict):
|
def getCiscoFeatures(curDataLine, urlSIPDict):
|
||||||
numCiscoFeatures = 30
|
numCiscoFeatures = 30
|
||||||
try:
|
try:
|
||||||
ciscoFeatures = urlSIPDict[str(curDataLine['domain']) + str(curDataLine['server_ip'])]
|
ciscoFeatures = urlSIPDict[str(curDataLine['domain']) + str(curDataLine['server_ip'])]
|
||||||
#print('cisco features: ' + str(ciscoFeatures))
|
# print('cisco features: ' + str(ciscoFeatures))
|
||||||
# log transform
|
# log transform
|
||||||
ciscoFeatures = np.log1p(ciscoFeatures,dtype='float32')
|
ciscoFeatures = np.log1p(ciscoFeatures, dtype='float32')
|
||||||
#print('log transformed: ' + str(ciscoFeatures))
|
# print('log transformed: ' + str(ciscoFeatures))
|
||||||
return ciscoFeatures.ravel()
|
return ciscoFeatures.ravel()
|
||||||
except:
|
except:
|
||||||
return np.zeros([numCiscoFeatures,]).ravel()
|
return np.zeros([numCiscoFeatures, ]).ravel()
|
||||||
|
|
||||||
|
|
||||||
|
def getCNNWithoutLastLayer(vocabSize, embeddingSize, input_length, filters, kernel_size,
|
||||||
def getCNNWithoutLastLayer(vocabSize,embeddingSize,input_length,filters,kernel_size,
|
hidden_dims, drop_out):
|
||||||
hidden_dims,drop_out):
|
|
||||||
model = Sequential()
|
model = Sequential()
|
||||||
model.add(Embedding(input_dim=vocabSize, output_dim=embeddingSize,
|
model.add(Embedding(input_dim=vocabSize, output_dim=embeddingSize,
|
||||||
input_length=input_length))
|
input_length=input_length))
|
||||||
@ -53,11 +41,12 @@ def getCNNWithoutLastLayer(vocabSize,embeddingSize,input_length,filters,kernel_s
|
|||||||
model.add(Activation('relu'))
|
model.add(Activation('relu'))
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def getCNNWitoutLastLayerFunctional(vocabSize,embeddingSize,input_length,filters,kernel_size,
|
|
||||||
hidden_dims,drop_out):
|
def getCNNWitoutLastLayerFunctional(vocabSize, embeddingSize, input_length, filters, kernel_size,
|
||||||
|
hidden_dims, drop_out):
|
||||||
a = Input(shape=(input_length,))
|
a = Input(shape=(input_length,))
|
||||||
embedding = Embedding(input_dim=vocabSize,output_dim=embeddingSize)(a)
|
embedding = Embedding(input_dim=vocabSize, output_dim=embeddingSize)(a)
|
||||||
conv1 = Conv1D(filters,kernel_size,activation='relu')(embedding)
|
conv1 = Conv1D(filters, kernel_size, activation='relu')(embedding)
|
||||||
glob = GlobalMaxPooling1D()(conv1)
|
glob = GlobalMaxPooling1D()(conv1)
|
||||||
dense = Dense(hidden_dims)(glob)
|
dense = Dense(hidden_dims)(glob)
|
||||||
drop = Dropout(drop_out)(dense)
|
drop = Dropout(drop_out)(dense)
|
||||||
@ -65,55 +54,58 @@ def getCNNWitoutLastLayerFunctional(vocabSize,embeddingSize,input_length,filters
|
|||||||
model = Model(a, model)
|
model = Model(a, model)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def getFlowFeatureLayer(numFeatures):
|
def getFlowFeatureLayer(numFeatures):
|
||||||
model = Sequential()
|
model = Sequential()
|
||||||
#slpModel.add(Dense(1, input_shape=(1,)))
|
# slpModel.add(Dense(1, input_shape=(1,)))
|
||||||
model.add(Lambda(lambda x: x + 0.0, input_shape=(numFeatures,)))
|
model.add(Lambda(lambda x: x + 0.0, input_shape=(numFeatures,)))
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def createCNNDataSet(domains,label,characterDict,maxLen=40):
|
def createCNNDataSet(domains, label, characterDict, maxLen=40):
|
||||||
# process domains in reverse order
|
# process domains in reverse order
|
||||||
outFeature = np.zeros([len(domains),maxLen])
|
outFeature = np.zeros([len(domains), maxLen])
|
||||||
outLabel = np.zeros([len(domains),])
|
outLabel = np.zeros([len(domains), ])
|
||||||
for i in range(len(domains)):
|
for i in range(len(domains)):
|
||||||
domain = domains[i]
|
domain = domains[i]
|
||||||
curLabel = label[i]
|
curLabel = label[i]
|
||||||
curFeature = np.zeros([maxLen,])
|
curFeature = np.zeros([maxLen, ])
|
||||||
# print(domain + ' ' + str(len(domain)))
|
# print(domain + ' ' + str(len(domain)))
|
||||||
for j in range(np.min([len(domain),maxLen])):
|
for j in range(np.min([len(domain), maxLen])):
|
||||||
#print(j)
|
# print(j)
|
||||||
curCharacter = domain[-j]
|
curCharacter = domain[-j]
|
||||||
if curCharacter in characterDict:
|
if curCharacter in characterDict:
|
||||||
curFeature[j] = characterDict[curCharacter]
|
curFeature[j] = characterDict[curCharacter]
|
||||||
outFeature[i] = curFeature
|
outFeature[i] = curFeature
|
||||||
outLabel[i] = curLabel
|
outLabel[i] = curLabel
|
||||||
return (outFeature,outLabel)
|
return (outFeature, outLabel)
|
||||||
|
|
||||||
def getFeatureVecForDomain(domain,characterDict,maxLen=40):
|
|
||||||
curFeature = np.zeros([maxLen,])
|
def getFeatureVecForDomain(domain, characterDict, maxLen=40):
|
||||||
for j in range(np.min([len(domain),maxLen])):
|
curFeature = np.zeros([maxLen, ])
|
||||||
#print(j)
|
for j in range(np.min([len(domain), maxLen])):
|
||||||
|
# print(j)
|
||||||
curCharacter = domain[-j]
|
curCharacter = domain[-j]
|
||||||
if curCharacter in characterDict:
|
if curCharacter in characterDict:
|
||||||
curFeature[j] = characterDict[curCharacter]
|
curFeature[j] = characterDict[curCharacter]
|
||||||
return curFeature
|
return curFeature
|
||||||
|
|
||||||
|
|
||||||
def getFlowFeatures(curDataLine):
|
def getFlowFeatures(curDataLine):
|
||||||
useKeys = ['duration','bytes_down','bytes_up']
|
useKeys = ['duration', 'bytes_down', 'bytes_up']
|
||||||
curFeature = np.zeros([len(useKeys),])
|
curFeature = np.zeros([len(useKeys), ])
|
||||||
for i in range(len(useKeys)):
|
for i in range(len(useKeys)):
|
||||||
curKey = useKeys[i]
|
curKey = useKeys[i]
|
||||||
try:
|
try:
|
||||||
curFeature[i] = np.log1p(curDataLine[curKey],dtype='float32')
|
curFeature[i] = np.log1p(curDataLine[curKey], dtype='float32')
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
return curFeature
|
return curFeature
|
||||||
|
|
||||||
|
|
||||||
def getChunksFromUserDataFrame(dataFrame,windowSize=10,overlapping=False,
|
def getChunksFromUserDataFrame(dataFrame, windowSize=10, overlapping=False,
|
||||||
maxLengthInSeconds=300):
|
maxLengthInSeconds=300):
|
||||||
#print('maxLength: ' + str(maxLengthInSeconds))
|
# print('maxLength: ' + str(maxLengthInSeconds))
|
||||||
maxMilliSeconds = maxLengthInSeconds * 1000
|
maxMilliSeconds = maxLengthInSeconds * 1000
|
||||||
outDomainLists = []
|
outDomainLists = []
|
||||||
outDFFrames = []
|
outDFFrames = []
|
||||||
@ -121,8 +113,8 @@ def getChunksFromUserDataFrame(dataFrame,windowSize=10,overlapping=False,
|
|||||||
numBlocks = int(np.ceil(float(len(dataFrame)) / float(windowSize)))
|
numBlocks = int(np.ceil(float(len(dataFrame)) / float(windowSize)))
|
||||||
userIDs = np.arange(len(dataFrame))
|
userIDs = np.arange(len(dataFrame))
|
||||||
for blockID in np.arange(numBlocks):
|
for blockID in np.arange(numBlocks):
|
||||||
curIDs = userIDs[(blockID * windowSize):((blockID+1)*windowSize)]
|
curIDs = userIDs[(blockID * windowSize):((blockID + 1) * windowSize)]
|
||||||
#print(curIDs)
|
# print(curIDs)
|
||||||
useData = dataFrame.iloc[curIDs]
|
useData = dataFrame.iloc[curIDs]
|
||||||
curDomains = useData['domain']
|
curDomains = useData['domain']
|
||||||
if maxLengthInSeconds != -1:
|
if maxLengthInSeconds != -1:
|
||||||
@ -138,8 +130,8 @@ def getChunksFromUserDataFrame(dataFrame,windowSize=10,overlapping=False,
|
|||||||
numBlocks = len(dataFrame) + 1 - windowSize
|
numBlocks = len(dataFrame) + 1 - windowSize
|
||||||
userIDs = np.arange(len(dataFrame))
|
userIDs = np.arange(len(dataFrame))
|
||||||
for blockID in np.arange(numBlocks):
|
for blockID in np.arange(numBlocks):
|
||||||
curIDs = userIDs[blockID:blockID+windowSize]
|
curIDs = userIDs[blockID:blockID + windowSize]
|
||||||
#print(curIDs)
|
# print(curIDs)
|
||||||
useData = dataFrame.iloc[curIDs]
|
useData = dataFrame.iloc[curIDs]
|
||||||
curDomains = useData['domain']
|
curDomains = useData['domain']
|
||||||
if maxLengthInSeconds != -1:
|
if maxLengthInSeconds != -1:
|
||||||
@ -151,11 +143,11 @@ def getChunksFromUserDataFrame(dataFrame,windowSize=10,overlapping=False,
|
|||||||
curDomains = useData['domain']
|
curDomains = useData['domain']
|
||||||
outDomainLists.append(list(curDomains))
|
outDomainLists.append(list(curDomains))
|
||||||
outDFFrames.append(useData)
|
outDFFrames.append(useData)
|
||||||
return (outDomainLists,outDFFrames)
|
return (outDomainLists, outDFFrames)
|
||||||
|
|
||||||
|
|
||||||
def createTrainData(domainLists,dfLists,charachterDict,maxLen,threshold = 3,
|
def createTrainData(domainLists, dfLists, charachterDict, maxLen, threshold=3,
|
||||||
flagUseCiscoFeatures=False,urlSIPDIct=dict,
|
flagUseCiscoFeatures=False, urlSIPDIct=dict,
|
||||||
windowSize=10):
|
windowSize=10):
|
||||||
if 'hits' in dfLists[0].keys():
|
if 'hits' in dfLists[0].keys():
|
||||||
hitName = 'hits'
|
hitName = 'hits'
|
||||||
@ -171,21 +163,21 @@ def createTrainData(domainLists,dfLists,charachterDict,maxLen,threshold = 3,
|
|||||||
hits = []
|
hits = []
|
||||||
trainNames = []
|
trainNames = []
|
||||||
for i in range(windowSize):
|
for i in range(windowSize):
|
||||||
outputFeatures.append(np.zeros([len(domainLists),maxLen]))
|
outputFeatures.append(np.zeros([len(domainLists), maxLen]))
|
||||||
outputFeatures.append(np.zeros([len(domainLists),numFeatures]))
|
outputFeatures.append(np.zeros([len(domainLists), numFeatures]))
|
||||||
|
|
||||||
for i in tqdm(np.arange(len(domainLists)), miniters=10):
|
for i in tqdm(np.arange(len(domainLists)), miniters=10):
|
||||||
curCounter = 0
|
curCounter = 0
|
||||||
#print('len domainList: ' + str(len(domainLists[i])))
|
# print('len domainList: ' + str(len(domainLists[i])))
|
||||||
#print('len df: ' + str(len(dfLists[i])))
|
# print('len df: ' + str(len(dfLists[i])))
|
||||||
for j in range(np.min([windowSize,len(domainLists[i])])):
|
for j in range(np.min([windowSize, len(domainLists[i])])):
|
||||||
outputFeatures[curCounter][i,:] = getFeatureVecForDomain(domainLists[i][j],charachterDict,maxLen)
|
outputFeatures[curCounter][i, :] = getFeatureVecForDomain(domainLists[i][j], charachterDict, maxLen)
|
||||||
curCounter += 1
|
curCounter += 1
|
||||||
if flagUseCiscoFeatures:
|
if flagUseCiscoFeatures:
|
||||||
outputFeatures[curCounter][i,0:numFlowFeatures] = getFlowFeatures(dfLists[i].iloc[j])
|
outputFeatures[curCounter][i, 0:numFlowFeatures] = getFlowFeatures(dfLists[i].iloc[j])
|
||||||
outputFeatures[curCounter][i,numFlowFeatures:] = getCiscoFeatures(dfLists[i].iloc[j],urlSIPDIct)
|
outputFeatures[curCounter][i, numFlowFeatures:] = getCiscoFeatures(dfLists[i].iloc[j], urlSIPDIct)
|
||||||
else:
|
else:
|
||||||
outputFeatures[curCounter][i,:] = getFlowFeatures(dfLists[i].iloc[j])
|
outputFeatures[curCounter][i, :] = getFlowFeatures(dfLists[i].iloc[j])
|
||||||
curCounter += 1
|
curCounter += 1
|
||||||
curLabel = 0.0
|
curLabel = 0.0
|
||||||
if np.max(dfLists[i][hitName]) >= threshold:
|
if np.max(dfLists[i][hitName]) >= threshold:
|
||||||
@ -201,212 +193,23 @@ def createTrainData(domainLists,dfLists,charachterDict,maxLen,threshold = 3,
|
|||||||
|
|
||||||
|
|
||||||
def transformStringListToNumpyArray(listString):
|
def transformStringListToNumpyArray(listString):
|
||||||
listString = listString.replace('[','').replace(']','')
|
listString = listString.replace('[', '').replace(']', '')
|
||||||
return np.array(listString.split(','),dtype='float32')
|
return np.array(listString.split(','), dtype='float32')
|
||||||
|
|
||||||
|
|
||||||
def getCiscoFeatureDict(csvPathList):
|
def getCiscoFeatureDict(csvPathList):
|
||||||
outDict = dict()
|
outDict = dict()
|
||||||
for path in tqdm(csvPathList, miniters=1):
|
for path in tqdm(csvPathList, miniters=1):
|
||||||
fobj = open(path,'r')
|
fobj = open(path, 'r')
|
||||||
csvReader = csv.DictReader(fobj,delimiter=',')
|
csvReader = csv.DictReader(fobj, delimiter=',')
|
||||||
for row in csvReader:
|
for row in csvReader:
|
||||||
urlSIPString = row['Domain'] + row['ServerIP']
|
urlSIPString = row['Domain'] + row['ServerIP']
|
||||||
ciscoFeatures = row['CiscoFeature']
|
ciscoFeatures = row['CiscoFeature']
|
||||||
outDict[urlSIPString] = transformStringListToNumpyArray(ciscoFeatures)
|
outDict[urlSIPString] = transformStringListToNumpyArray(ciscoFeatures)
|
||||||
#if len(outDict) % 10000 == 0:
|
# if len(outDict) % 10000 == 0:
|
||||||
# print('numbers in dict: ' + str(len(outDict)))
|
# print('numbers in dict: ' + str(len(outDict)))
|
||||||
return outDict
|
return outDict
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
pass
|
||||||
# get data
|
|
||||||
trainDirsUserLevel = ['trainData/joblib2016-07-annomalous-stg-new/10/',
|
|
||||||
'trainData/joblib2016-07-annomalous-stg-new/09/',
|
|
||||||
'trainData/joblib2016-07-annomalous-stg-new/08/',
|
|
||||||
'trainData/joblib2016-07-annomalous-stg-new/07/',
|
|
||||||
'trainData/joblib2016-07-annomalous-stg-new/06/']
|
|
||||||
|
|
||||||
testDirsUserLevel = ['trainData/joblib2016-09-annomalous-stg-new/07/',\
|
|
||||||
'trainData/joblib2016-09-annomalous-stg-new/08/',\
|
|
||||||
'trainData/joblib2016-09-annomalous-stg-new/09/',\
|
|
||||||
'trainData/joblib2016-09-annomalous-stg-new/10/',\
|
|
||||||
'trainData/joblib2016-09-annomalous-stg-new/11/',\
|
|
||||||
'trainData/joblib2016-09-annomalous-stg-new/12/',\
|
|
||||||
'trainData/joblib2016-09-annomalous-stg-new/13/',\
|
|
||||||
'trainData/joblib2016-09-annomalous-stg-new/14/']
|
|
||||||
|
|
||||||
trainCiscoFeatureCSVPaths = ['trainData/ciscoDomainFeatueres_joblib2016-07-annomalous-stg-new_07.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-07-annomalous-stg-new_06.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-07-annomalous-stg-new_08.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-07-annomalous-stg-new_10.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-07-annomalous-stg-new_09.csv']
|
|
||||||
|
|
||||||
testCiscoFeatureCSVPaths = ['trainData/ciscoDomainFeatueres_joblib2016-09-annomalous-stg-new_12.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-09-annomalous-stg-new_08.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-09-annomalous-stg-new_07.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-09-annomalous-stg-new_09.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-09-annomalous-stg-new_13.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-09-annomalous-stg-new_14.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-09-annomalous-stg-new_10.csv',
|
|
||||||
'trainData/ciscoDomainFeatueres_joblib2016-09-annomalous-stg-new_11.csv']
|
|
||||||
|
|
||||||
# parameter
|
|
||||||
numNegPerDay = 5000
|
|
||||||
numEpochs = 10
|
|
||||||
domainFeatures = 512
|
|
||||||
flowFeatures = 3
|
|
||||||
numCiscoFeatures= 30
|
|
||||||
windowSize = 10
|
|
||||||
maxLen = 40
|
|
||||||
|
|
||||||
lstmUnits = 32
|
|
||||||
lstmDenseSize = 128
|
|
||||||
embeddingSize = 100
|
|
||||||
kernel_size = 2
|
|
||||||
drop_out = 0.5
|
|
||||||
filters = 2
|
|
||||||
hidden_dims = 100
|
|
||||||
vocabSize = 40
|
|
||||||
flagUseCiscoFeatures = True
|
|
||||||
threshold = 3
|
|
||||||
resultStoreDir = 'results/201705/'
|
|
||||||
if flagUseCiscoFeatures:
|
|
||||||
resultStorePath = resultStoreDir + 'cnn_plus_cisco_plus_lstm_numNegPerDay' + str(numNegPerDay) + '.joblib'
|
|
||||||
resultModelPath = resultStoreDir + 'cnn_plus_cisco_plus_lstm_numNegPerDay' + str(numNegPerDay)
|
|
||||||
else:
|
|
||||||
resultStorePath = resultStoreDir + 'cnn_plus_lstm_numNegPerDay' + str(numNegPerDay) + '.joblib'
|
|
||||||
resultModelPath = resultStoreDir + 'cnn_plus_lstm_numNegPerDay' + str(numNegPerDay)
|
|
||||||
flagRedo = True
|
|
||||||
|
|
||||||
|
|
||||||
if flagUseCiscoFeatures:
|
|
||||||
if 'trainCiscoFeatureDict' not in locals():
|
|
||||||
trainCiscoFeatureDict = getCiscoFeatureDict(trainCiscoFeatureCSVPaths)
|
|
||||||
|
|
||||||
if 'testCiscoFeatureDict' not in locals():
|
|
||||||
testCiscoFeatureDict = getCiscoFeatureDict(testCiscoFeatureCSVPaths)
|
|
||||||
else:
|
|
||||||
trainCiscoFeatureDict = dict()
|
|
||||||
testCiscoFeatureDict = dict()
|
|
||||||
|
|
||||||
if flagRedo or not os.path.exists(resultStorePath):
|
|
||||||
if 'characterDict' not in locals():
|
|
||||||
characterDictPath = 'trainData/characterIDDict.joblib'
|
|
||||||
characterDict = joblib.load(characterDictPath)['characterIDDict']
|
|
||||||
|
|
||||||
|
|
||||||
print('create train data')
|
|
||||||
if 'dataFrameList' not in locals():
|
|
||||||
(dataFrameList) = ciscoProcessing.loadRawDataSetFromJoblibPerUser(\
|
|
||||||
trainDirsUserLevel,numNegPerDay = numNegPerDay)
|
|
||||||
maxHits = []
|
|
||||||
for i in range(len(dataFrameList)):
|
|
||||||
maxHits.append(np.max(dataFrameList[i]['hits']))
|
|
||||||
|
|
||||||
print('create test data')
|
|
||||||
# validation error
|
|
||||||
if 'testDataFrameList' not in locals():
|
|
||||||
(testDataFrameList) = ciscoProcessing.loadRawDataSetFromJoblibPerUser(\
|
|
||||||
[testDirsUserLevel[0]],numNegPerDay = numNegPerDay)
|
|
||||||
maxHits = []
|
|
||||||
for i in range(len(testDataFrameList)):
|
|
||||||
maxHits.append(np.max(testDataFrameList[i]['hits']))
|
|
||||||
|
|
||||||
sharedCNNFun = getCNNWitoutLastLayerFunctional(len(characterDict)+1,embeddingSize,maxLen,domainFeatures,kernel_size,domainFeatures,0.5)
|
|
||||||
|
|
||||||
inputList = []
|
|
||||||
encodedList = []
|
|
||||||
numFeatures = flowFeatures
|
|
||||||
if flagUseCiscoFeatures:
|
|
||||||
numFeatures += numCiscoFeatures
|
|
||||||
for i in range(windowSize):
|
|
||||||
inputList.append(Input(shape=(maxLen,)))
|
|
||||||
encodedList.append(sharedCNNFun(inputList[-1])) # add shared domain model
|
|
||||||
inputList.append(Input(shape=(numFeatures,)))
|
|
||||||
|
|
||||||
merge_layer_input = []
|
|
||||||
for i in range(windowSize):
|
|
||||||
merge_layer_input.append(encodedList[i])
|
|
||||||
merge_layer_input.append(inputList[(2*i)+1])
|
|
||||||
|
|
||||||
|
|
||||||
# We can then concatenate the two vectors:
|
|
||||||
merged_vector = keras.layers.concatenate(merge_layer_input, axis=-1)
|
|
||||||
reshape = Reshape((windowSize, domainFeatures+numFeatures))(merged_vector)
|
|
||||||
lstm = LSTM(lstmUnits, input_shape=(windowSize,domainFeatures+numFeatures))(reshape)
|
|
||||||
dense = Dense(lstmDenseSize, activation='relu')(lstm)
|
|
||||||
dropout = Dropout(0.5)(dense)
|
|
||||||
# And add a logistic regression on top
|
|
||||||
predictions = Dense(2, activation='softmax')(dropout)
|
|
||||||
|
|
||||||
# We define a trainable model linking the
|
|
||||||
# tweet inputs to the predictions
|
|
||||||
model = Model(inputs=inputList, outputs=predictions)
|
|
||||||
|
|
||||||
model.compile(optimizer='adam',
|
|
||||||
loss='binary_crossentropy',
|
|
||||||
metrics=['accuracy'])
|
|
||||||
|
|
||||||
|
|
||||||
# get train data
|
|
||||||
domainLists = []
|
|
||||||
dfLists = []
|
|
||||||
for i in tqdm(np.arange(len(dataFrameList)), miniters=10):
|
|
||||||
(domainListsTmp,dfListsTmp) = getChunksFromUserDataFrame(dataFrameList[i],windowSize=windowSize,overlapping=False)
|
|
||||||
domainLists += domainListsTmp
|
|
||||||
dfLists += dfListsTmp
|
|
||||||
|
|
||||||
(trainData,trainLabel,trainHits,trainNames) = createTrainData(domainLists,dfLists,characterDict,
|
|
||||||
maxLen,threshold = threshold,
|
|
||||||
flagUseCiscoFeatures=flagUseCiscoFeatures,urlSIPDIct=trainCiscoFeatureDict)
|
|
||||||
useIDs = np.where(trainHits == 0)[0]
|
|
||||||
useIDs = np.concatenate([useIDs,np.where(trainHits >= threshold)[0]])
|
|
||||||
for i in range(len(trainData)):
|
|
||||||
trainData[i] = np.array(trainData[i])[useIDs]
|
|
||||||
trainLabel = trainLabel[useIDs]
|
|
||||||
trainHits = trainHits[useIDs]
|
|
||||||
trainNames = trainNames[useIDs]
|
|
||||||
|
|
||||||
# get test data
|
|
||||||
domainLists = []
|
|
||||||
dfLists = []
|
|
||||||
for i in tqdm(np.arange(len(testDataFrameList)), miniters=10):
|
|
||||||
(domainListsTmp,dfListsTmp) = getChunksFromUserDataFrame(testDataFrameList[i],windowSize=windowSize,overlapping=False)
|
|
||||||
domainLists += domainListsTmp
|
|
||||||
dfLists += dfListsTmp
|
|
||||||
|
|
||||||
(testData,testLabel,testHits,testNames) = createTrainData(domainLists,dfLists,characterDict,
|
|
||||||
maxLen,threshold = threshold,
|
|
||||||
flagUseCiscoFeatures=flagUseCiscoFeatures,urlSIPDIct=testCiscoFeatureDict)
|
|
||||||
useIDs = np.where(testHits == 0)[0]
|
|
||||||
useIDs = np.concatenate([useIDs,np.where(testHits >= threshold)[0]])
|
|
||||||
for i in range(len(testData)):
|
|
||||||
testData[i] = np.array(testData[i])[useIDs]
|
|
||||||
testLabel = testLabel[useIDs]
|
|
||||||
testHits = testHits[useIDs]
|
|
||||||
testNames = testNames[useIDs]
|
|
||||||
|
|
||||||
numPos = len(np.where(trainLabel == 1.0)[0])
|
|
||||||
numNeg = len(np.where(trainLabel == 0.0)[0])
|
|
||||||
print('major class: ' + str(float(numNeg) / float(numNeg + numPos)))
|
|
||||||
lstmLabel = np_utils.to_categorical(trainLabel, 2)
|
|
||||||
lstmTestLabel = np_utils.to_categorical(testLabel, 2)
|
|
||||||
trainHist = model.fit(trainData,lstmLabel,epochs=numEpochs,batch_size=128, validation_data=(testData,lstmTestLabel))
|
|
||||||
|
|
||||||
|
|
||||||
# save lstm model
|
|
||||||
ciscoProcessing.save_model(model,resultModelPath+'.json',
|
|
||||||
resultModelPath + '.h5')
|
|
||||||
|
|
||||||
# classify train and test
|
|
||||||
trainScores = model.predict(trainData)[:,1]
|
|
||||||
testScores = model.predict(testData)[:,1]
|
|
||||||
|
|
||||||
joblib.dump({'testLabel':testLabel,
|
|
||||||
'testHits':testHits,
|
|
||||||
'testNames':testNames,
|
|
||||||
'testScores':testScores,
|
|
||||||
'trainLabel':trainLabel,
|
|
||||||
'trainScores':trainScores},resultStorePath,compress=3)
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user