refactor dataset generation
This commit is contained in:
parent
772b07847f
commit
b2f5c56019
2
Makefile
2
Makefile
@ -1,3 +1,3 @@
|
|||||||
test:
|
test:
|
||||||
python3 main.py --epochs 1 --batch 64
|
python3 main.py --epochs 1 --batch 64 --train data/rk_data.csv.gz --test data/rk_data.csv.gz
|
||||||
|
|
||||||
|
25
dataset.py
25
dataset.py
@ -117,12 +117,27 @@ def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10,
|
|||||||
break
|
break
|
||||||
|
|
||||||
print("create training dataset")
|
print("create training dataset")
|
||||||
return create_dataset_from_lists(
|
domain_tr, flow_tr, hits_tr, names_tr, server_tr, trusted_hits_tr = create_dataset_from_lists(
|
||||||
domains=domains, features=features, vocab=char_dict,
|
domains=domains, features=features, vocab=char_dict,
|
||||||
max_len=max_len,
|
max_len=max_len,
|
||||||
use_cisco_features=use_cisco_features, urlSIPDIct=dict(),
|
use_cisco_features=use_cisco_features, urlSIPDIct=dict(),
|
||||||
window_size=window_size)
|
window_size=window_size)
|
||||||
|
|
||||||
|
# make client labels discrete with 4 different values
|
||||||
|
# TODO: use trusted_hits_tr for client classification too
|
||||||
|
client_labels = np.apply_along_axis(lambda x: discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
|
||||||
|
# select only 1.0 and 0.0 from training data
|
||||||
|
pos_idx = np.where(client_labels == 1.0)[0]
|
||||||
|
neg_idx = np.where(client_labels == 0.0)[0]
|
||||||
|
idx = np.concatenate((pos_idx, neg_idx))
|
||||||
|
# choose selected sample to train on
|
||||||
|
domain_tr = domain_tr[idx]
|
||||||
|
flow_tr = flow_tr[idx]
|
||||||
|
client_labels = client_labels[idx]
|
||||||
|
server_labels = server_tr[idx]
|
||||||
|
|
||||||
|
return domain_tr, flow_tr, client_labels, server_labels
|
||||||
|
|
||||||
|
|
||||||
def create_dataset_from_lists(domains, features, vocab, max_len,
|
def create_dataset_from_lists(domains, features, vocab, max_len,
|
||||||
use_cisco_features=False, urlSIPDIct=dict(),
|
use_cisco_features=False, urlSIPDIct=dict(),
|
||||||
@ -185,9 +200,11 @@ def discretize_label(values, threshold):
|
|||||||
return 0.0
|
return 0.0
|
||||||
|
|
||||||
|
|
||||||
def get_user_flow_data():
|
def get_user_flow_data(csv_file):
|
||||||
df = pd.read_csv("data/rk_data.csv.gz")
|
df = pd.read_csv(csv_file)
|
||||||
df.drop("Unnamed: 0", 1, inplace=True)
|
keys = ["duration", "bytes_down", "bytes_up", "domain", "timeStamp", "server_ip", "user_hash", "virusTotalHits",
|
||||||
|
"serverLabel", "trustedHits"]
|
||||||
|
df = df[keys]
|
||||||
df.set_index(keys=['user_hash'], drop=False, inplace=True)
|
df.set_index(keys=['user_hash'], drop=False, inplace=True)
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
59
main.py
59
main.py
@ -1,6 +1,5 @@
|
|||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from keras.utils import np_utils
|
from keras.utils import np_utils
|
||||||
|
|
||||||
import dataset
|
import dataset
|
||||||
@ -8,17 +7,20 @@ import models
|
|||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
parser.add_argument("--modes", action="store", dest="modes", nargs="+")
|
# parser.add_argument("--modes", action="store", dest="modes", nargs="+")
|
||||||
|
|
||||||
|
parser.add_argument("--train", action="store", dest="train_data",
|
||||||
|
default="data/full_dataset.csv.tar.bz2")
|
||||||
|
|
||||||
|
parser.add_argument("--test", action="store", dest="test_data",
|
||||||
|
default="data/full_future_dataset.csv.tar.bz2")
|
||||||
|
|
||||||
# parser.add_argument("--data", action="store", dest="data",
|
|
||||||
# default="data/")
|
|
||||||
#
|
|
||||||
# parser.add_argument("--h5data", action="store", dest="h5data",
|
# parser.add_argument("--h5data", action="store", dest="h5data",
|
||||||
# default="")
|
# default="")
|
||||||
#
|
#
|
||||||
# parser.add_argument("--model", action="store", dest="model",
|
parser.add_argument("--model", action="store", dest="model",
|
||||||
# default="model_x")
|
default="model_x")
|
||||||
#
|
|
||||||
# parser.add_argument("--pred", action="store", dest="pred",
|
# parser.add_argument("--pred", action="store", dest="pred",
|
||||||
# default="")
|
# default="")
|
||||||
#
|
#
|
||||||
@ -66,8 +68,7 @@ parser.add_argument("--domain_embd", action="store", dest="domain_embedding",
|
|||||||
#
|
#
|
||||||
# parser.add_argument("--tmp", action="store_true", dest="tmp")
|
# parser.add_argument("--tmp", action="store_true", dest="tmp")
|
||||||
#
|
#
|
||||||
# parser.add_argument("--test", action="store", dest="test_image",
|
# parser.add_argument("--test", action="store_true", dest="test")
|
||||||
# default=6, choices=range(7), type=int)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
@ -82,37 +83,24 @@ def main():
|
|||||||
# parameter
|
# parameter
|
||||||
cnnDropout = 0.5
|
cnnDropout = 0.5
|
||||||
cnnHiddenDims = 1024
|
cnnHiddenDims = 1024
|
||||||
flowFeatures = 3
|
|
||||||
numCiscoFeatures = 30
|
numCiscoFeatures = 30
|
||||||
kernel_size = 3
|
kernel_size = 3
|
||||||
drop_out = 0.5
|
drop_out = 0.5
|
||||||
filters = 128
|
filters = 128
|
||||||
|
|
||||||
char_dict = dataset.get_character_dict()
|
char_dict = dataset.get_character_dict()
|
||||||
user_flow_df = dataset.get_user_flow_data()
|
user_flow_df = dataset.get_user_flow_data(args.train_data)
|
||||||
|
|
||||||
print("create training dataset")
|
print("create training dataset")
|
||||||
domain_tr, flow_tr, hits_tr, names_tr, server_tr, trusted_hits_tr = dataset.create_dataset_from_flows(
|
domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(
|
||||||
user_flow_df, char_dict,
|
user_flow_df, char_dict,
|
||||||
max_len=args.domain_length, window_size=args.window)
|
max_len=args.domain_length, window_size=args.window)
|
||||||
# make client labels discrete with 4 different values
|
|
||||||
# TODO: use trusted_hits_tr for client classification too
|
|
||||||
client_labels = np.apply_along_axis(lambda x: dataset.discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
|
|
||||||
# select only 1.0 and 0.0 from training data
|
|
||||||
pos_idx = np.where(client_labels == 1.0)[0]
|
|
||||||
neg_idx = np.where(client_labels == 0.0)[0]
|
|
||||||
idx = np.concatenate((pos_idx, neg_idx))
|
|
||||||
# choose selected sample to train on
|
|
||||||
domain_tr = domain_tr[idx]
|
|
||||||
flow_tr = flow_tr[idx]
|
|
||||||
client_labels = client_labels[idx]
|
|
||||||
server_labels = server_tr[idx]
|
|
||||||
|
|
||||||
shared_cnn = models.renes_networks.get_embedding(len(char_dict) + 1, args.embedding, args.domain_length,
|
shared_cnn = models.renes_networks.get_embedding(len(char_dict) + 1, args.embedding, args.domain_length,
|
||||||
args.hidden_char_dims, kernel_size, args.domain_embedding, 0.5)
|
args.hidden_char_dims, kernel_size, args.domain_embedding, 0.5)
|
||||||
shared_cnn.summary()
|
shared_cnn.summary()
|
||||||
|
|
||||||
model = models.renes_networks.get_model(cnnDropout, flowFeatures, args.domain_embedding,
|
model = models.renes_networks.get_model(cnnDropout, flow_tr.shape[-1], args.domain_embedding,
|
||||||
args.window, args.domain_length, filters, kernel_size,
|
args.window, args.domain_length, filters, kernel_size,
|
||||||
cnnHiddenDims, shared_cnn)
|
cnnHiddenDims, shared_cnn)
|
||||||
model.summary()
|
model.summary()
|
||||||
@ -121,14 +109,23 @@ def main():
|
|||||||
loss='binary_crossentropy',
|
loss='binary_crossentropy',
|
||||||
metrics=['accuracy'])
|
metrics=['accuracy'])
|
||||||
|
|
||||||
client_labels = np_utils.to_categorical(client_labels, 2)
|
client_tr = np_utils.to_categorical(client_tr, 2)
|
||||||
server_labels = np_utils.to_categorical(server_labels, 2)
|
server_tr = np_utils.to_categorical(server_tr, 2)
|
||||||
model.fit([domain_tr, flow_tr],
|
model.fit([domain_tr, flow_tr],
|
||||||
[client_labels, server_labels],
|
[client_tr, server_tr],
|
||||||
batch_size=args.batch_size,
|
batch_size=args.batch_size,
|
||||||
epochs=args.epochs,
|
epochs=args.epochs,
|
||||||
shuffle=True)
|
shuffle=True,
|
||||||
# TODO: for validation we use future data -> validation_data=(testData,testLabel))
|
validation_split=0.2)
|
||||||
|
|
||||||
|
|
||||||
|
def test():
|
||||||
|
char_dict = dataset.get_character_dict()
|
||||||
|
user_flow_df = dataset.get_user_flow_data(args.test_data)
|
||||||
|
domain_val, flow_val, client_val, server_val = dataset.create_dataset_from_flows(
|
||||||
|
user_flow_df, char_dict,
|
||||||
|
max_len=args.domain_length, window_size=args.window)
|
||||||
|
# TODO: get model and exec model.evaluate(...)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
x
Reference in New Issue
Block a user