change hyperband to count minimal val_loss over all losses
This commit is contained in:
parent
371a1dad05
commit
b24fa770f9
42
Makefile
42
Makefile
@ -1,65 +1,65 @@
|
|||||||
run:
|
run:
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_both_1 --epochs 2 --depth flat1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_1 --epochs 2 --depth flat1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_both_2 --epochs 2 --depth flat1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_2 --epochs 2 --depth flat1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_both_3 --epochs 2 --depth deep1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_3 --epochs 2 --depth deep1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_both_4 --epochs 2 --depth deep1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_4 --epochs 2 --depth deep1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_both_5 --epochs 2 --depth flat2 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_5 --epochs 2 --depth flat2 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type staggered --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type staggered --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_client_1 --epochs 2 --depth flat2 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_1 --epochs 2 --depth flat2 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output client
|
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output client
|
||||||
|
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_client_2 --epochs 2 --depth flat2 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_2 --epochs 2 --depth flat2 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --type inter --model_output client
|
--dense_embd 16 --domain_embd 8 --batch 64 --type inter --model_output client
|
||||||
|
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_client_3 --epochs 2 --depth deep1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_3 --epochs 2 --depth deep1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --type final --model_output client
|
--dense_embd 16 --domain_embd 8 --batch 64 --type final --model_output client
|
||||||
|
|
||||||
python3 main.py --mode train --train data/rk_mini.csv.gz --model results/test/test_client_4 --epochs 2 --depth deep1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_4 --epochs 2 --depth deep1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output client
|
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output client
|
||||||
|
|
||||||
test:
|
test:
|
||||||
python3 main.py --mode test --batch 128 --models results/test/test_both_* --test data/rk_mini.csv.gz --model_output both
|
python3 main.py --mode test --batch 128 --models results/test/test_both_* --data data/rk_mini.csv.gz --model_output both
|
||||||
python3 main.py --mode test --batch 128 --models results/test/test_client_* --test data/rk_mini.csv.gz --model_output client
|
python3 main.py --mode test --batch 128 --models results/test/test_client_* --data data/rk_mini.csv.gz --model_output client
|
||||||
|
|
||||||
fancy:
|
fancy:
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_both_1 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_both_1 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_both_2 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_both_2 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_both_3 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_both_3 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_both_4 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_both_4 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_both_5 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_both_5 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_client_1 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_client_1 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_client_2 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_client_2 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_client_3 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_client_3 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
python3 main.py --mode fancy --batch 128 --model results/test/test_client_4 --test data/rk_mini.csv.gz
|
python3 main.py --mode fancy --batch 128 --model results/test/test_client_4 --data data/rk_mini.csv.gz
|
||||||
|
|
||||||
all-fancy:
|
all-fancy:
|
||||||
python3 main.py --mode all_fancy --batch 128 --models results/test/test* --test data/rk_mini.csv.gz \
|
python3 main.py --mode all_fancy --batch 128 --models results/test/test* --data data/rk_mini.csv.gz \
|
||||||
--out-prefix results/test/
|
--out-prefix results/test/
|
||||||
|
|
||||||
hyper:
|
hyper:
|
||||||
|
@ -71,7 +71,7 @@ class Hyperband:
|
|||||||
shuffle=True,
|
shuffle=True,
|
||||||
validation_split=0.4)
|
validation_split=0.4)
|
||||||
|
|
||||||
return {"loss": history.history['val_loss'][-1],
|
return {"loss": np.min(history.history['val_loss']),
|
||||||
"early_stop": len(history.history["loss"]) < n_iterations}
|
"early_stop": len(history.history["loss"]) < n_iterations}
|
||||||
|
|
||||||
# can be called multiple times
|
# can be called multiple times
|
||||||
|
151
main.py
151
main.py
@ -5,7 +5,8 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint
|
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint
|
||||||
from keras.models import Model, load_model as load_keras_model
|
from keras.models import Model
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
|
||||||
import arguments
|
import arguments
|
||||||
import dataset
|
import dataset
|
||||||
@ -14,7 +15,7 @@ import models
|
|||||||
# create logger
|
# create logger
|
||||||
import visualize
|
import visualize
|
||||||
from arguments import get_model_args
|
from arguments import get_model_args
|
||||||
from utils import exists_or_make_path, get_custom_class_weights
|
from utils import exists_or_make_path, get_custom_class_weights, load_model
|
||||||
|
|
||||||
logger = logging.getLogger('logger')
|
logger = logging.getLogger('logger')
|
||||||
logger.setLevel(logging.DEBUG)
|
logger.setLevel(logging.DEBUG)
|
||||||
@ -85,19 +86,13 @@ def create_model(model, output_type):
|
|||||||
raise Exception("unknown model output")
|
raise Exception("unknown model output")
|
||||||
|
|
||||||
|
|
||||||
def load_model(path, custom_objects=None):
|
|
||||||
clf = load_keras_model(path, custom_objects)
|
|
||||||
embd = clf.get_layer("domain_cnn").layer
|
|
||||||
return embd, clf
|
|
||||||
|
|
||||||
|
|
||||||
def main_paul_best():
|
def main_paul_best():
|
||||||
pauls_best_params = models.pauls_networks.best_config
|
pauls_best_params = models.pauls_networks.best_config
|
||||||
main_train(pauls_best_params)
|
main_train(pauls_best_params)
|
||||||
|
|
||||||
|
|
||||||
def main_hyperband():
|
def main_hyperband():
|
||||||
params = {
|
param_dist = {
|
||||||
# static params
|
# static params
|
||||||
"type": [args.model_type],
|
"type": [args.model_type],
|
||||||
"depth": [args.model_depth],
|
"depth": [args.model_depth],
|
||||||
@ -119,8 +114,8 @@ def main_hyperband():
|
|||||||
}
|
}
|
||||||
|
|
||||||
logger.info("create training dataset")
|
logger.info("create training dataset")
|
||||||
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.train_h5data,
|
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.data,
|
||||||
args.train_data,
|
args.data,
|
||||||
args.domain_length,
|
args.domain_length,
|
||||||
args.window)
|
args.window)
|
||||||
server_tr = np.max(server_windows_tr, axis=1)
|
server_tr = np.max(server_windows_tr, axis=1)
|
||||||
@ -128,11 +123,14 @@ def main_hyperband():
|
|||||||
if args.model_type in ("inter", "staggered"):
|
if args.model_type in ("inter", "staggered"):
|
||||||
server_tr = np.expand_dims(server_windows_tr, 2)
|
server_tr = np.expand_dims(server_windows_tr, 2)
|
||||||
|
|
||||||
hp = hyperband.Hyperband(params,
|
hp = hyperband.Hyperband(param_dist,
|
||||||
[domain_tr, flow_tr],
|
[domain_tr, flow_tr],
|
||||||
[client_tr, server_tr])
|
[client_tr, server_tr],
|
||||||
|
max_iter=81,
|
||||||
|
savefile=args.hyperband_results)
|
||||||
results = hp.run()
|
results = hp.run()
|
||||||
joblib.dump(results, args.hyperband_results)
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
def main_train(param=None):
|
def main_train(param=None):
|
||||||
@ -140,8 +138,8 @@ def main_train(param=None):
|
|||||||
exists_or_make_path(args.model_path)
|
exists_or_make_path(args.model_path)
|
||||||
logger.info(f"Use command line arguments: {args}")
|
logger.info(f"Use command line arguments: {args}")
|
||||||
|
|
||||||
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.train_h5data,
|
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.data,
|
||||||
args.train_data,
|
args.data,
|
||||||
args.domain_length,
|
args.domain_length,
|
||||||
args.window)
|
args.window)
|
||||||
logger.info("define callbacks")
|
logger.info("define callbacks")
|
||||||
@ -237,8 +235,8 @@ def main_retrain():
|
|||||||
logger.info(f"Use command line arguments: {args}")
|
logger.info(f"Use command line arguments: {args}")
|
||||||
exists_or_make_path(args.model_destination)
|
exists_or_make_path(args.model_destination)
|
||||||
|
|
||||||
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.train_h5data,
|
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.data,
|
||||||
args.train_data,
|
args.data,
|
||||||
args.domain_length,
|
args.domain_length,
|
||||||
args.window)
|
args.window)
|
||||||
logger.info("define callbacks")
|
logger.info("define callbacks")
|
||||||
@ -265,7 +263,7 @@ def main_retrain():
|
|||||||
custom_class_weights = None
|
custom_class_weights = None
|
||||||
|
|
||||||
logger.info(f"Load pretrained model")
|
logger.info(f"Load pretrained model")
|
||||||
embedding, model = load_model(source, custom_objects=models.get_metrics())
|
embedding, model = load_model(source, custom_objects=models.get_custom_objects())
|
||||||
|
|
||||||
if args.model_type in ("inter", "staggered"):
|
if args.model_type in ("inter", "staggered"):
|
||||||
server_tr = np.expand_dims(server_windows_tr, 2)
|
server_tr = np.expand_dims(server_windows_tr, 2)
|
||||||
@ -293,16 +291,16 @@ def main_retrain():
|
|||||||
|
|
||||||
def main_test():
|
def main_test():
|
||||||
logger.info("start test: load data")
|
logger.info("start test: load data")
|
||||||
domain_val, flow_val, _, _, _, _ = dataset.load_or_generate_raw_h5data(args.test_h5data,
|
domain_val, flow_val, _, _, _, _ = dataset.load_or_generate_raw_h5data(args.data,
|
||||||
args.test_data,
|
args.data,
|
||||||
args.domain_length,
|
args.domain_length,
|
||||||
args.window)
|
args.window)
|
||||||
domain_encs, _ = dataset.load_or_generate_domains(args.test_data, args.domain_length)
|
domain_encs, _ = dataset.load_or_generate_domains(args.data, args.domain_length)
|
||||||
|
|
||||||
for model_args in get_model_args(args):
|
for model_args in get_model_args(args):
|
||||||
results = {}
|
results = {}
|
||||||
logger.info(f"process model {model_args['model_path']}")
|
logger.info(f"process model {model_args['model_path']}")
|
||||||
embd_model, clf_model = load_model(model_args["clf_model"], custom_objects=models.get_metrics())
|
embd_model, clf_model = load_model(model_args["clf_model"], custom_objects=models.get_custom_objects())
|
||||||
|
|
||||||
pred = clf_model.predict([domain_val, flow_val],
|
pred = clf_model.predict([domain_val, flow_val],
|
||||||
batch_size=args.batch_size,
|
batch_size=args.batch_size,
|
||||||
@ -324,8 +322,28 @@ def main_test():
|
|||||||
|
|
||||||
|
|
||||||
def main_visualization():
|
def main_visualization():
|
||||||
_, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.test_h5data,
|
def plot_model(clf_model, path):
|
||||||
args.test_data,
|
embd, model = load_model(clf_model, custom_objects=models.get_custom_objects())
|
||||||
|
visualize.plot_model_as(embd, os.path.join(path, "model_embd.pdf"))
|
||||||
|
visualize.plot_model_as(model, os.path.join(path, "model_clf.pdf"))
|
||||||
|
|
||||||
|
def vis(model_name, model_path, df, df_paul, aggregation, curve):
|
||||||
|
visualize.plot_clf()
|
||||||
|
if aggregation == "user":
|
||||||
|
df = df.groupby(df.names).max()
|
||||||
|
df_paul = df_paul.groupby(df_paul.names).max()
|
||||||
|
if curve == "prc":
|
||||||
|
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_name)
|
||||||
|
visualize.plot_precision_recall(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
|
||||||
|
elif curve == "roc":
|
||||||
|
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_name)
|
||||||
|
visualize.plot_roc_curve(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
|
||||||
|
|
||||||
|
visualize.plot_legend()
|
||||||
|
visualize.plot_save("{}/{}_{}.png".format(model_path, aggregation, curve))
|
||||||
|
|
||||||
|
_, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.data,
|
||||||
|
args.data,
|
||||||
args.domain_length,
|
args.domain_length,
|
||||||
args.window)
|
args.window)
|
||||||
|
|
||||||
@ -343,11 +361,9 @@ def main_visualization():
|
|||||||
"hits_vt": paul["testLabel"].flatten(), "hits_trusted": paul["testHits"].flatten()
|
"hits_vt": paul["testLabel"].flatten(), "hits_trusted": paul["testHits"].flatten()
|
||||||
})
|
})
|
||||||
df_paul["client_val"] = np.logical_or(df_paul.hits_vt == 1.0, df_paul.hits_trusted >= 3)
|
df_paul["client_val"] = np.logical_or(df_paul.hits_vt == 1.0, df_paul.hits_trusted >= 3)
|
||||||
df_paul_user = df_paul.groupby(df_paul.names).max()
|
|
||||||
|
|
||||||
logger.info("plot model")
|
logger.info("plot model")
|
||||||
embd, model = load_model(args.clf_model, custom_objects=models.get_metrics())
|
plot_model(args.clf_model, args.model_path)
|
||||||
visualize.plot_model_as(model, os.path.join(args.model_path, "model.png"))
|
|
||||||
|
|
||||||
# logger.info("plot training curve")
|
# logger.info("plot training curve")
|
||||||
# logs = pd.read_csv(args.train_log)
|
# logs = pd.read_csv(args.train_log)
|
||||||
@ -359,31 +375,15 @@ def main_visualization():
|
|||||||
# else:
|
# else:
|
||||||
# logger.warning("Error while plotting training curves")
|
# logger.warning("Error while plotting training curves")
|
||||||
|
|
||||||
logger.info("plot pr curve")
|
logger.info("plot window prc")
|
||||||
visualize.plot_clf()
|
vis(args.model_name, args.model_path, df, df_paul, "window", "prc")
|
||||||
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), args.model_name)
|
logger.info("plot window roc")
|
||||||
visualize.plot_precision_recall(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
|
vis(args.model_name, args.model_path, df, df_paul, "window", "roc")
|
||||||
visualize.plot_legend()
|
logger.info("plot user prc")
|
||||||
visualize.plot_save("{}/window_client_prc.png".format(args.model_path))
|
vis(args.model_name, args.model_path, df, df_paul, "user", "prc")
|
||||||
|
logger.info("plot user roc")
|
||||||
|
vis(args.model_name, args.model_path, df, df_paul, "user", "roc")
|
||||||
|
|
||||||
logger.info("plot roc curve")
|
|
||||||
visualize.plot_clf()
|
|
||||||
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), args.model_name)
|
|
||||||
visualize.plot_roc_curve(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
|
|
||||||
visualize.plot_legend()
|
|
||||||
visualize.plot_save("{}/window_client_roc.png".format(args.model_path))
|
|
||||||
|
|
||||||
visualize.plot_clf()
|
|
||||||
visualize.plot_precision_recall(df_user.client_val.as_matrix(), df_user.client_pred.as_matrix(), args.model_name)
|
|
||||||
visualize.plot_precision_recall(df_paul_user.client_val.as_matrix(), df_paul_user.client_pred.as_matrix(), "paul")
|
|
||||||
visualize.plot_legend()
|
|
||||||
visualize.plot_save("{}/user_client_prc.png".format(args.model_path))
|
|
||||||
|
|
||||||
visualize.plot_clf()
|
|
||||||
visualize.plot_roc_curve(df_user.client_val.as_matrix(), df_user.client_pred.as_matrix(), args.model_name)
|
|
||||||
visualize.plot_roc_curve(df_paul_user.client_val.as_matrix(), df_paul_user.client_pred.as_matrix(), "paul")
|
|
||||||
visualize.plot_legend()
|
|
||||||
visualize.plot_save("{}/user_client_roc.png".format(args.model_path))
|
|
||||||
# absolute values
|
# absolute values
|
||||||
visualize.plot_confusion_matrix(df.client_val.as_matrix(), df.client_pred.as_matrix().round(),
|
visualize.plot_confusion_matrix(df.client_val.as_matrix(), df.client_pred.as_matrix().round(),
|
||||||
"{}/client_cov.png".format(args.model_path),
|
"{}/client_cov.png".format(args.model_path),
|
||||||
@ -398,25 +398,18 @@ def main_visualization():
|
|||||||
visualize.plot_confusion_matrix(df_user.client_val.as_matrix(), df_user.client_pred.as_matrix().round(),
|
visualize.plot_confusion_matrix(df_user.client_val.as_matrix(), df_user.client_pred.as_matrix().round(),
|
||||||
"{}/user_cov_norm.png".format(args.model_path),
|
"{}/user_cov_norm.png".format(args.model_path),
|
||||||
normalize=True, title="User Confusion Matrix")
|
normalize=True, title="User Confusion Matrix")
|
||||||
logger.info("visualize embedding")
|
plot_embedding(args.model_path, results["domain_embds"], args.data, args.domain_length)
|
||||||
domain_encs, labels = dataset.load_or_generate_domains(args.test_data, args.domain_length)
|
|
||||||
domain_embedding = results["domain_embds"]
|
|
||||||
visualize.plot_embedding(domain_embedding, labels, path="{}/embd_svd.png".format(args.model_path), method="svd")
|
|
||||||
visualize.plot_embedding(domain_embedding, labels, path="{}/embd_tsne.png".format(args.model_path), method="tsne")
|
|
||||||
|
|
||||||
|
|
||||||
def plot_embedding():
|
def plot_embedding(model_path, domain_embedding, data, domain_length):
|
||||||
logger.info("visualize embedding")
|
logger.info("visualize embedding")
|
||||||
results = dataset.load_predictions(args.model_path)
|
domain_encs, labels = dataset.load_or_generate_domains(data, domain_length)
|
||||||
domain_encs, labels = dataset.load_or_generate_domains(args.test_data, args.domain_length)
|
visualize.plot_embedding(domain_embedding, labels, path="{}/embd_svd.png".format(model_path), method="svd")
|
||||||
domain_embedding = results["domain_embds"]
|
|
||||||
visualize.plot_embedding(domain_embedding, labels, path="{}/embd_svd.png".format(args.model_path), method="svd")
|
|
||||||
visualize.plot_embedding(domain_embedding, labels, path="{}/embd_tsne.png".format(args.model_path), method="tsne")
|
|
||||||
|
|
||||||
|
|
||||||
def main_visualize_all():
|
def main_visualize_all():
|
||||||
_, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.test_h5data,
|
_, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.data,
|
||||||
args.test_data,
|
args.data,
|
||||||
args.domain_length,
|
args.domain_length,
|
||||||
args.window)
|
args.window)
|
||||||
|
|
||||||
@ -480,8 +473,8 @@ import joblib
|
|||||||
|
|
||||||
|
|
||||||
def main_beta():
|
def main_beta():
|
||||||
_, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.test_h5data,
|
_, _, name_val, hits_vt, hits_trusted, server_val = dataset.load_or_generate_raw_h5data(args.data,
|
||||||
args.test_data,
|
args.data,
|
||||||
args.domain_length,
|
args.domain_length,
|
||||||
args.window)
|
args.window)
|
||||||
path, model_prefix = os.path.split(os.path.normpath(args.output_prefix))
|
path, model_prefix = os.path.split(os.path.normpath(args.output_prefix))
|
||||||
@ -489,7 +482,7 @@ def main_beta():
|
|||||||
results = joblib.load(f"{path}/curves.joblib")
|
results = joblib.load(f"{path}/curves.joblib")
|
||||||
except Exception:
|
except Exception:
|
||||||
results = {}
|
results = {}
|
||||||
results[model_prefix] = {}
|
results[model_prefix] = {"all": {}}
|
||||||
|
|
||||||
def load_df(path):
|
def load_df(path):
|
||||||
res = dataset.load_predictions(path)
|
res = dataset.load_predictions(path)
|
||||||
@ -514,7 +507,9 @@ def main_beta():
|
|||||||
for model_args in get_model_args(args):
|
for model_args in get_model_args(args):
|
||||||
df = load_df(model_args["model_path"])
|
df = load_df(model_args["model_path"])
|
||||||
predictions.append(df.client_pred.as_matrix())
|
predictions.append(df.client_pred.as_matrix())
|
||||||
results[model_prefix]["window_prc"] = visualize.calc_pr_mean(df.client_val.as_matrix(), predictions)
|
results[model_prefix][model_args["model_name"]] = confusion_matrix(df.client_val.as_matrix(),
|
||||||
|
df.client_pred.as_matrix().round())
|
||||||
|
results[model_prefix]["all"]["window_prc"] = visualize.calc_pr_mean(df.client_val.as_matrix(), predictions)
|
||||||
visualize.plot_pr_mean(df.client_val.as_matrix(), predictions, "mean")
|
visualize.plot_pr_mean(df.client_val.as_matrix(), predictions, "mean")
|
||||||
visualize.plot_pr_mean(df_paul.client_val.as_matrix(), [df_paul.client_pred.as_matrix()], "paul")
|
visualize.plot_pr_mean(df_paul.client_val.as_matrix(), [df_paul.client_pred.as_matrix()], "paul")
|
||||||
visualize.plot_legend()
|
visualize.plot_legend()
|
||||||
@ -526,7 +521,9 @@ def main_beta():
|
|||||||
for model_args in get_model_args(args):
|
for model_args in get_model_args(args):
|
||||||
df = load_df(model_args["model_path"])
|
df = load_df(model_args["model_path"])
|
||||||
predictions.append(df.client_pred.as_matrix())
|
predictions.append(df.client_pred.as_matrix())
|
||||||
results[model_prefix]["window_roc"] = visualize.calc_roc_mean(df.client_val.as_matrix(), predictions)
|
results[model_prefix][model_args["model_name"]] = confusion_matrix(df.client_val.as_matrix(),
|
||||||
|
df.client_pred.as_matrix().round())
|
||||||
|
results[model_prefix]["all"]["window_roc"] = visualize.calc_roc_mean(df.client_val.as_matrix(), predictions)
|
||||||
visualize.plot_roc_mean(df.client_val.as_matrix(), predictions, "mean")
|
visualize.plot_roc_mean(df.client_val.as_matrix(), predictions, "mean")
|
||||||
visualize.plot_roc_mean(df_paul.client_val.as_matrix(), [df_paul.client_pred.as_matrix()], "paul")
|
visualize.plot_roc_mean(df_paul.client_val.as_matrix(), [df_paul.client_pred.as_matrix()], "paul")
|
||||||
visualize.plot_legend()
|
visualize.plot_legend()
|
||||||
@ -539,7 +536,9 @@ def main_beta():
|
|||||||
df = load_df(model_args["model_path"])
|
df = load_df(model_args["model_path"])
|
||||||
df = df.groupby(df.names).max()
|
df = df.groupby(df.names).max()
|
||||||
predictions.append(df.client_pred.as_matrix())
|
predictions.append(df.client_pred.as_matrix())
|
||||||
results[model_prefix]["user_prc"] = visualize.calc_pr_mean(df.client_val.as_matrix(), predictions)
|
results[model_prefix][model_args["model_name"]] = confusion_matrix(df.client_val.as_matrix(),
|
||||||
|
df.client_pred.as_matrix().round())
|
||||||
|
results[model_prefix]["all"]["user_prc"] = visualize.calc_pr_mean(df.client_val.as_matrix(), predictions)
|
||||||
visualize.plot_pr_mean(df.client_val.as_matrix(), predictions, "mean")
|
visualize.plot_pr_mean(df.client_val.as_matrix(), predictions, "mean")
|
||||||
visualize.plot_pr_mean(df_paul_user.client_val.as_matrix(), [df_paul_user.client_pred.as_matrix()], "paul")
|
visualize.plot_pr_mean(df_paul_user.client_val.as_matrix(), [df_paul_user.client_pred.as_matrix()], "paul")
|
||||||
visualize.plot_legend()
|
visualize.plot_legend()
|
||||||
@ -552,7 +551,7 @@ def main_beta():
|
|||||||
df = load_df(model_args["model_path"])
|
df = load_df(model_args["model_path"])
|
||||||
df = df.groupby(df.names).max()
|
df = df.groupby(df.names).max()
|
||||||
predictions.append(df.client_pred.as_matrix())
|
predictions.append(df.client_pred.as_matrix())
|
||||||
results[model_prefix]["user_roc"] = visualize.calc_roc_mean(df.client_val.as_matrix(), predictions)
|
results[model_prefix]["all"]["user_roc"] = visualize.calc_roc_mean(df.client_val.as_matrix(), predictions)
|
||||||
visualize.plot_roc_mean(df.client_val.as_matrix(), predictions, "mean")
|
visualize.plot_roc_mean(df.client_val.as_matrix(), predictions, "mean")
|
||||||
visualize.plot_roc_mean(df_paul_user.client_val.as_matrix(), [df_paul_user.client_pred.as_matrix()], "paul")
|
visualize.plot_roc_mean(df_paul_user.client_val.as_matrix(), [df_paul_user.client_pred.as_matrix()], "paul")
|
||||||
visualize.plot_legend()
|
visualize.plot_legend()
|
||||||
@ -576,7 +575,7 @@ def plot_overall_result():
|
|||||||
logger.info(f"plot {vis}")
|
logger.info(f"plot {vis}")
|
||||||
visualize.plot_clf()
|
visualize.plot_clf()
|
||||||
for model_key in results.keys():
|
for model_key in results.keys():
|
||||||
ys_mean, ys_std, score = results[model_key][vis]
|
ys_mean, ys_std, score = results[model_key]["all"][vis]
|
||||||
plt.plot(x, ys_mean, label=f"{model_key} - {score:5.4}")
|
plt.plot(x, ys_mean, label=f"{model_key} - {score:5.4}")
|
||||||
plt.fill_between(x, ys_mean - ys_std, ys_mean + ys_std, alpha=0.2)
|
plt.fill_between(x, ys_mean - ys_std, ys_mean + ys_std, alpha=0.2)
|
||||||
if vis.endswith("prc"):
|
if vis.endswith("prc"):
|
||||||
@ -604,14 +603,8 @@ def main():
|
|||||||
main_visualization()
|
main_visualization()
|
||||||
if "all_fancy" == args.mode:
|
if "all_fancy" == args.mode:
|
||||||
main_visualize_all()
|
main_visualize_all()
|
||||||
if "embd" == args.mode:
|
|
||||||
plot_embedding()
|
|
||||||
if "paul" == args.mode:
|
|
||||||
main_paul_best()
|
|
||||||
if "beta" == args.mode:
|
if "beta" == args.mode:
|
||||||
main_beta()
|
main_beta()
|
||||||
if "beta_all" == args.mode:
|
|
||||||
plot_overall_result()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
13
utils.py
13
utils.py
@ -3,6 +3,7 @@ from operator import itemgetter
|
|||||||
|
|
||||||
import joblib
|
import joblib
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from keras.models import load_model as load_keras_model
|
||||||
from sklearn.utils import class_weight
|
from sklearn.utils import class_weight
|
||||||
|
|
||||||
|
|
||||||
@ -27,3 +28,15 @@ def get_custom_sample_weights(client, server):
|
|||||||
def load_ordered_hyperband_results(path):
|
def load_ordered_hyperband_results(path):
|
||||||
results = joblib.load(path)
|
results = joblib.load(path)
|
||||||
return sorted(results, itemgetter("loss"))
|
return sorted(results, itemgetter("loss"))
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(path, custom_objects=None):
|
||||||
|
clf = load_keras_model(path, custom_objects)
|
||||||
|
try:
|
||||||
|
embd = clf.get_layer("domain_cnn").layer
|
||||||
|
except Exception:
|
||||||
|
# in some version i forgot to specify domain_cnn
|
||||||
|
# this bug fix is for certain compatibility
|
||||||
|
embd = clf.layers[1].layer
|
||||||
|
|
||||||
|
return embd, clf
|
||||||
|
@ -38,6 +38,7 @@ def plot_clf():
|
|||||||
|
|
||||||
|
|
||||||
def plot_save(path, dpi=300):
|
def plot_save(path, dpi=300):
|
||||||
|
plt.title(path)
|
||||||
fig = plt.gcf()
|
fig = plt.gcf()
|
||||||
fig.set_size_inches(18.5, 10.5)
|
fig.set_size_inches(18.5, 10.5)
|
||||||
fig.savefig(path, dpi=dpi)
|
fig.savefig(path, dpi=dpi)
|
||||||
@ -48,6 +49,10 @@ def plot_legend():
|
|||||||
plt.legend()
|
plt.legend()
|
||||||
|
|
||||||
|
|
||||||
|
def mathews_correlation_curve(y, y_pred):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
def plot_precision_recall(y, y_pred, label=""):
|
def plot_precision_recall(y, y_pred, label=""):
|
||||||
y = y.flatten()
|
y = y.flatten()
|
||||||
y_pred = y_pred.flatten()
|
y_pred = y_pred.flatten()
|
||||||
|
Loading…
Reference in New Issue
Block a user