From 9f0bae33d563056bed8dfa140ba74c0ae85effb8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ren=C3=A9=20Knaebel?= Date: Tue, 11 Jul 2017 21:06:58 +0200 Subject: [PATCH] refactor dataset generation, add callbacks --- dataset.py | 65 +++++++++++++------------------------- main.py | 92 ++++++++++++++++++++++++++++-------------------------- 2 files changed, 69 insertions(+), 88 deletions(-) diff --git a/dataset.py b/dataset.py index f4a40e6..b0ecdd6 100644 --- a/dataset.py +++ b/dataset.py @@ -25,6 +25,7 @@ def encode_char(c): encode_char = np.vectorize(encode_char) +# TODO: refactor def get_user_chunks(dataFrame, windowSize=10, overlapping=False, maxLengthInSeconds=300): maxMilliSeconds = maxLengthInSeconds * 1000 @@ -66,32 +67,17 @@ def get_user_chunks(dataFrame, windowSize=10, overlapping=False, if len(outDomainLists[-1]) != windowSize: outDomainLists.pop(-1) outDFFrames.pop(-1) - return (outDomainLists, outDFFrames) + return outDomainLists, outDFFrames -def get_domain_features(domain, vocab, max_length=40): +def get_domain_features(domain, vocab: dict, max_length=40): encoding = np.zeros((max_length,)) - for j in range(np.min([len(domain), max_length])): - char = domain[-j] - if char in vocab: - encoding[j] = vocab[char] + for j in range(min(len(domain), max_length)): + char = domain[-j] # TODO: why -j -> order reversed for domain url? + encoding[j] = vocab.get(char, 0) return encoding -def get_flow_features(flow): - keys = ['duration', 'bytes_down', 'bytes_up'] - features = np.zeros([len(keys), ]) - for i, key in enumerate(keys): - # TODO: does it still works after exceptions occur -- default: zero! - # i wonder whether something brokes - # if there are exceptions regarding to inconsistent feature length - try: - features[i] = np.log1p(flow[key]).astype(float) - except: - pass - return features - - def get_all_flow_features(features): flows = np.stack(list( map(lambda f: f[["duration", "bytes_up", "bytes_down"]], features)) @@ -99,7 +85,7 @@ def get_all_flow_features(features): return np.log1p(flows) -def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10, use_cisco_features=False): +def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10): domains = [] features = [] print("get chunks from user data frames") @@ -112,11 +98,11 @@ def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10, features += feature_windows print("create training dataset") - domain_tr, flow_tr, hits_tr, names_tr, server_tr, trusted_hits_tr = create_dataset_from_lists(domains=domains, - flows=features, - vocab=char_dict, - max_len=max_len, - window_size=window_size) + domain_tr, flow_tr, hits_tr, _, server_tr, trusted_hits_tr = create_dataset_from_lists(domains=domains, + flows=features, + vocab=char_dict, + max_len=max_len, + window_size=window_size) # make client labels discrete with 4 different values hits_tr = np.apply_along_axis(lambda x: discretize_label(x, 3), 0, np.atleast_2d(hits_tr)) @@ -164,27 +150,20 @@ def create_dataset_from_lists(domains, flows, vocab, max_len, window_size=10): :param window_size: size of the flow window :return: """ - numFeatures = 3 - sample_size = len(domains) - hits = [] - names = [] - servers = [] - trusted_hits = [] + # sample_size = len(domains) - domain_features = np.zeros((sample_size, window_size, max_len)) - flow_features = np.zeros((sample_size, window_size, numFeatures)) + # domain_features = np.zeros((sample_size, window_size, max_len)) + flow_features = get_all_flow_features(flows) - for i in tqdm(np.arange(sample_size), miniters=10): - for j in range(window_size): - domain_features[i, j, :] = get_domain_features(domains[i][j], vocab, max_len) - flow_features[i, j, :] = get_flow_features(flows[i].iloc[j]) + domain_features = np.array([[get_domain_features(d, vocab, max_len) for d in x] for x in domains]) + + hits = np.max(np.stack(map(lambda f: f.virusTotalHits, flows)), axis=1) + names = np.unique(np.stack(map(lambda f: f.user_hash, flows)), axis=1) + servers = np.max(np.stack(map(lambda f: f.serverLabel, flows)), axis=1) + trusted_hits = np.max(np.stack(map(lambda f: f.trustedHits, flows)), axis=1) - hits.append(np.max(flows[i]['virusTotalHits'])) - names.append(np.unique(flows[i]['user_hash'])) - servers.append(np.max(flows[i]['serverLabel'])) - trusted_hits.append(np.max(flows[i]['trustedHits'])) return (domain_features, flow_features, - np.array(hits), np.array(names), np.array(servers), np.array(trusted_hits)) + hits, names, servers, trusted_hits) def discretize_label(values, threshold): diff --git a/main.py b/main.py index d92eb06..ba1455a 100644 --- a/main.py +++ b/main.py @@ -1,6 +1,7 @@ import argparse import os +from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping from keras.models import load_model import dataset @@ -21,8 +22,8 @@ parser.add_argument("--test", action="store", dest="test_data", # parser.add_argument("--h5data", action="store", dest="h5data", # default="") # -parser.add_argument("--models", action="store", dest="models", - default="models/model_x") +parser.add_argument("--models", action="store", dest="model_path", + default="models/models_x") # parser.add_argument("--pred", action="store", dest="pred", # default="") @@ -75,8 +76,9 @@ parser.add_argument("--domain_embd", action="store", dest="domain_embedding", args = parser.parse_args() -args.embedding_model = args.models + "_embd.h5" -args.clf_model = args.models + "_clf.h5" +args.embedding_model = os.path.join(args.model_path, "embd.h5") +args.clf_model = os.path.join(args.model_path, "clf.h5") +args.train_log = os.path.join(args.model_path, "train.log") args.h5data = args.train_data + ".h5" @@ -93,21 +95,8 @@ def exists_or_make_path(p): def main_paul_best(): char_dict = dataset.get_character_dict() - print("check for h5data") - try: - open(args.h5data, "r") - raise FileNotFoundError() - except FileNotFoundError: - print("h5 data not found - load csv file") - user_flow_df = dataset.get_user_flow_data(args.train_data) - print("create training dataset") - domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows( - user_flow_df, char_dict, - max_len=args.domain_length, window_size=args.window) - print("store training dataset as h5 file") - dataset.store_h5dataset(args.h5data, domain_tr, flow_tr, client_tr, server_tr) - print("load h5 dataset") - domain_tr, flow_tr, client_tr, server_tr = dataset.load_h5dataset(args.h5data) + domain_tr, flow_tr, client_tr, server_tr = load_or_generate_h5data(args.h5data, args.train_data, + args.domain_length, args.window) param = models.pauls_networks.best_config param["vocab_size"] = len(char_dict) + 1 @@ -157,33 +146,38 @@ def main_hyperband(): print(param) print("create training dataset") - domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows( - user_flow_df, char_dict, - max_len=args.domain_length, - window_size=args.window) + domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(user_flow_df, char_dict, + max_len=args.domain_length, + window_size=args.window) hp = hyperband.Hyperband(params, [domain_tr, flow_tr], [client_tr, server_tr]) hp.run() -def main_train(): - # exists_or_make_path(args.clf_model) +def load_or_generate_h5data(h5data, train_data, domain_length, window_size): char_dict = dataset.get_character_dict() - print("check for h5data") + print("check for h5data", h5data) try: - open(args.h5data, "r") - raise FileNotFoundError() + open(h5data, "r") except FileNotFoundError: print("h5 data not found - load csv file") - user_flow_df = dataset.get_user_flow_data(args.train_data) + user_flow_df = dataset.get_user_flow_data(train_data) print("create training dataset") - domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows( - user_flow_df, char_dict, - max_len=args.domain_length, window_size=args.window) + domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(user_flow_df, char_dict, + max_len=domain_length, + window_size=window_size) print("store training dataset as h5 file") dataset.store_h5dataset(args.h5data, domain_tr, flow_tr, client_tr, server_tr) print("load h5 dataset") - domain_tr, flow_tr, client_tr, server_tr = dataset.load_h5dataset(args.h5data) + return dataset.load_h5dataset(h5data) + + +def main_train(): + exists_or_make_path(args.model_path) + + char_dict = dataset.get_character_dict() + domain_tr, flow_tr, client_tr, server_tr = load_or_generate_h5data(args.h5data, args.train_data, + args.domain_length, args.window) # parameter param = { @@ -210,34 +204,42 @@ def main_train(): embedding, model = models.get_models_by_params(param) embedding.summary() model.summary() - + print("define callbacks") + cp = ModelCheckpoint(filepath=args.clf_model, + monitor='val_loss', + verbose=False, + save_best_only=True) + csv = CSVLogger(args.train_log) + early = EarlyStopping(monitor='val_loss', + patience=5, + verbose=False) + print("compile model") model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) - + print("start training") model.fit([domain_tr, flow_tr], [client_tr, server_tr], batch_size=args.batch_size, epochs=args.epochs, + callbacks=[cp, csv, early], shuffle=True, validation_split=0.2) - + print("save embedding") embedding.save(args.embedding_model) - model.save(args.clf_model) def main_test(): - char_dict = dataset.get_character_dict() - user_flow_df = dataset.get_user_flow_data(args.test_data) - domain_val, flow_val, client_val, server_val = dataset.create_dataset_from_flows( - user_flow_df, char_dict, - max_len=args.domain_length, window_size=args.window) + domain_val, flow_val, client_val, server_val = load_or_generate_h5data(args.h5data, args.train_data, + args.domain_length, args.window) # embedding = load_model(args.embedding_model) clf = load_model(args.clf_model) - print(clf.evaluate([domain_val, flow_val], - [client_val, server_val], - batch_size=args.batch_size)) + loss, _, _, client_acc, server_acc = clf.evaluate([domain_val, flow_val], + [client_val, server_val], + batch_size=args.batch_size) + + print(f"loss: {loss}\nclient acc: {client_acc}\nserver acc: {server_acc}") def main_visualization():