refactor hyperband; fix domain generation

integrate hyperband option in training procedure - start refactoring - remove the index erro in generation and add helper functions
This commit is contained in:
René Knaebel 2017-11-04 12:47:08 +01:00
parent 8b17bd0701
commit 88e3eda595
3 changed files with 209 additions and 128 deletions

View File

@ -12,7 +12,7 @@ from tqdm import tqdm
logger = logging.getLogger('cisco_logger') logger = logging.getLogger('cisco_logger')
char2idx = dict((char, idx + 1) for (idx, char) in char2idx = dict((char, idx + 1) for (idx, char) in
enumerate(string.ascii_lowercase + string.punctuation + string.digits)) enumerate(string.ascii_lowercase + string.punctuation + string.digits + " "))
idx2char = {v: k for k, v in char2idx.items()} idx2char = {v: k for k, v in char2idx.items()}
@ -34,50 +34,18 @@ def decode_char(i):
encode_char = np.vectorize(encode_char) encode_char = np.vectorize(encode_char)
decode_char = np.vectorize(decode_char)
def encode_domain(domain: string):
return encode_char(list(domain))
def decode_domain(domain):
return "".join(decode_char(domain))
# TODO: ask for correct refactoring
def get_user_chunks(user_flow, window=10): def get_user_chunks(user_flow, window=10):
# TODO: what is maxLengthInSeconds for?!?
# maxMilliSeconds = maxLengthInSeconds * 1000
# domains = []
# flows = []
# if not overlapping:
# numBlocks = int(np.ceil(len(user_flow) / window))
# userIDs = np.arange(len(user_flow))
# for blockID in np.arange(numBlocks):
# curIDs = userIDs[(blockID * window):((blockID + 1) * window)]
# useData = user_flow.iloc[curIDs]
# curDomains = useData['domain']
# if maxLengthInSeconds != -1:
# curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
# underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
# if len(underTimeOutIDs) != len(curIDs):
# curIDs = curIDs[underTimeOutIDs]
# useData = user_flow.iloc[curIDs]
# curDomains = useData['domain']
# domains.append(list(curDomains))
# flows.append(useData)
# else:
# numBlocks = len(user_flow) + 1 - window
# userIDs = np.arange(len(user_flow))
# for blockID in np.arange(numBlocks):
# curIDs = userIDs[blockID:blockID + window]
# useData = user_flow.iloc[curIDs]
# curDomains = useData['domain']
# if maxLengthInSeconds != -1:
# curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
# underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
# if len(underTimeOutIDs) != len(curIDs):
# curIDs = curIDs[underTimeOutIDs]
# useData = user_flow.iloc[curIDs]
# curDomains = useData['domain']
# domains.append(list(curDomains))
# flows.append(useData)
# if domains and len(domains[-1]) != window:
# domains.pop(-1)
# flows.pop(-1)
# return domains, flows
result = [] result = []
chunk_size = (len(user_flow) // window) chunk_size = (len(user_flow) // window)
for i in range(chunk_size): for i in range(chunk_size):
@ -87,12 +55,11 @@ def get_user_chunks(user_flow, window=10):
return result return result
# TODO: DATA CORRUPTION; reverse, 0! to n def get_domain_features(domain: string, max_length=40):
def get_domain_features(domain, max_length=40):
encoding = np.zeros((max_length,)) encoding = np.zeros((max_length,))
for j in range(min(len(domain), max_length)): for j in range(min(len(domain), max_length)):
char = domain[-j] # TODO: why -j -> order reversed for domain url? c = domain[len(domain) - 1 - j]
encoding[j] = encode_char(char) encoding[max_length - 1 - j] = encode_char(c)
return encoding return encoding
@ -207,6 +174,7 @@ def get_user_flow_data(csv_file):
"bytes_up": int, "bytes_up": int,
"domain": object, "domain": object,
"timeStamp": float, "timeStamp": float,
"http_method": object,
"server_ip": object, "server_ip": object,
"user_hash": float, "user_hash": float,
"virusTotalHits": int, "virusTotalHits": int,
@ -314,7 +282,7 @@ def load_or_generate_domains(train_data, domain_length):
domain_encs = user_flow_df.domain.apply(lambda d: get_domain_features(d, domain_length)) domain_encs = user_flow_df.domain.apply(lambda d: get_domain_features(d, domain_length))
domain_encs = np.stack(domain_encs) domain_encs = np.stack(domain_encs)
return domain_encs, user_flow_df[["clientLabel", "serverLabel"]].as_matrix().astype(bool) return domain_encs, user_flow_df.domain, user_flow_df[["clientLabel", "serverLabel"]].as_matrix().astype(bool)
def save_predictions(path, results): def save_predictions(path, results):

View File

@ -27,4 +27,4 @@ DATADIR=$4
python3 main.py --mode embedding --batch 1024 --models ${RESDIR}/client_final_{1..20}/ ${RESDIR}/both_final_{1..20}/ \ python3 main.py --mode embedding --batch 1024 --models ${RESDIR}/client_final_{1..20}/ ${RESDIR}/both_final_{1..20}/ \
${RESDIR}/both_inter_{1..20}/ ${RESDIR}/both_staggered_{1..20}/ \ ${RESDIR}/both_inter_{1..20}/ ${RESDIR}/both_staggered_{1..20}/ \
--data ${DATADIR} \ --data ${DATADIR} \
--out-prefix ${RESDIR}/figs/tsne/tsne --out-prefix ${RESDIR}/figs/svd/svd

273
main.py
View File

@ -1,4 +1,5 @@
import logging import logging
import operator
import os import os
import joblib import joblib
@ -78,6 +79,50 @@ PARAMS = {
} }
# TODO: remove inner global params
def get_param_dist(size="small"):
if dist_type == "small":
return {
# static params
"type": [args.model_type],
"depth": [args.model_depth],
"model_output": [args.model_output],
"batch_size": [args.batch_size],
"window_size": [args.window],
"flow_features": [3],
"domain_length": [args.domain_length],
# model params
"embedding": [2 ** x for x in range(3, 6)],
"filter_embedding": [2 ** x for x in range(1, 8)],
"kernel_embedding": [1, 3, 5],
"dense_embedding": [2 ** x for x in range(4, 8)],
"dropout": [0.5],
"filter_main": [2 ** x for x in range(1, 8)],
"kernel_main": [1, 3, 5],
"dense_main": [2 ** x for x in range(1, 8)],
}
else:
return {
# static params
"type": [args.model_type],
"depth": [args.model_depth],
"model_output": [args.model_output],
"batch_size": [args.batch_size],
"window_size": [args.window],
"flow_features": [3],
"domain_length": [args.domain_length],
# model params
"embedding": [2 ** x for x in range(3, 7)],
"filter_embedding": [2 ** x for x in range(1, 10)],
"kernel_embedding": [1, 3, 5, 7, 9],
"dense_embedding": [2 ** x for x in range(4, 10)],
"dropout": [0.5],
"filter_main": [2 ** x for x in range(1, 10)],
"kernel_main": [1, 3, 5, 7, 9],
"dense_main": [2 ** x for x in range(1, 12)],
}
def create_model(model, output_type): def create_model(model, output_type):
if output_type == "both": if output_type == "both":
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server)) return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server))
@ -87,53 +132,45 @@ def create_model(model, output_type):
raise Exception("unknown model output") raise Exception("unknown model output")
def shuffle_training_data(domain, flow, client, server):
idx = np.random.permutation(len(domain))
domain = domain[idx]
flow = flow[idx]
client = client[idx]
server = server[idx]
return domain, flow, client, server
def main_paul_best(): def main_paul_best():
pauls_best_params = models.pauls_networks.best_config pauls_best_params = models.pauls_networks.best_config
main_train(pauls_best_params) main_train(pauls_best_params)
def main_hyperband(): def main_hyperband(data, domain_length, window_size, model_type, result_file, dist_size="small"):
param_dist = { param_dist = get_param_dist(dist_size)
# static params
"type": [args.model_type],
"depth": [args.model_depth],
"model_output": [args.model_output],
"batch_size": [args.batch_size],
"window_size": [args.window],
"flow_features": [3],
"domain_length": [args.domain_length],
# model params
"embedding": [2 ** x for x in range(3, 7)],
"filter_embedding": [2 ** x for x in range(1, 10)],
"kernel_embedding": [1, 3, 5, 7, 9],
"dense_embedding": [2 ** x for x in range(4, 10)],
"dropout": [0.5],
"filter_main": [2 ** x for x in range(1, 10)],
"kernel_main": [1, 3, 5, 7, 9],
"dense_main": [2 ** x for x in range(1, 12)],
}
logger.info("create training dataset") logger.info("create training dataset")
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.data, domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(data,
args.data, data,
args.domain_length, domain_length,
args.window) window)
server_tr = np.max(server_windows_tr, axis=1) server_tr = np.max(server_windows_tr, axis=1)
if args.model_type in ("inter", "staggered"): if model_type in ("inter", "staggered"):
server_tr = np.expand_dims(server_windows_tr, 2) server_tr = np.expand_dims(server_windows_tr, 2)
idx = np.random.permutation(len(domain_tr))
domain_tr = domain_tr[idx]
flow_tr = flow_tr[idx]
client_tr = client_tr[idx]
server_tr = server_tr[idx]
domain_tr, flow_tr, client_tr, server_tr = shuffle_training_data(domain_tr, flow_tr, client_tr, server_tr)
return run_hyperband(dist_size, domain_tr, flow_tr, client_tr, server_tr, 81, result_file)
def run_hyperband(dist_size, domain, flow, client, server, max_iter, savefile):
param_dist = get_param_dist(dist_size)
hp = hyperband.Hyperband(param_dist, hp = hyperband.Hyperband(param_dist,
[domain_tr, flow_tr], [domain, flow],
[client_tr, server_tr], [client, server],
max_iter=81, max_iter=max_iter,
savefile=args.hyperband_results) savefile=savefile)
results = hp.run() results = hp.run()
return results return results
@ -148,10 +185,23 @@ def main_train(param=None):
exists_or_make_path(args.model_path) exists_or_make_path(args.model_path)
logger.info(f"Use command line arguments: {args}") logger.info(f"Use command line arguments: {args}")
# data preparation
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.data, domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.data,
args.data, args.data,
args.domain_length, args.domain_length,
args.window) args.window)
server_tr = np.max(server_windows_tr, axis=1)
if args.model_type in ("inter", "staggered"):
server_tr = np.expand_dims(server_windows_tr, 2)
# call hyperband if used
if args.hyperband_results:
logger.info("start hyperband parameter search")
hyper_results = run_hyperband("small", domain_tr, flow_tr, client_tr, server_tr, 81, args.hyperband_results)
param = sorted(hyper_results, key=operator.itemgetter("loss"))[0]
logger.info(f"select params from result: {param}")
# define training call backs
logger.info("define callbacks") logger.info("define callbacks")
callbacks = [] callbacks = []
callbacks.append(ModelCheckpoint(filepath=args.clf_model, callbacks.append(ModelCheckpoint(filepath=args.clf_model,
@ -166,8 +216,7 @@ def main_train(param=None):
verbose=False)) verbose=False))
custom_metrics = models.get_metric_functions() custom_metrics = models.get_metric_functions()
server_tr = np.max(server_windows_tr, axis=1) # custom class or sample weights
if args.class_weights: if args.class_weights:
logger.info("class weights: compute custom weights") logger.info("class weights: compute custom weights")
custom_class_weights = get_custom_class_weights(client_tr.value, server_tr) custom_class_weights = get_custom_class_weights(client_tr.value, server_tr)
@ -193,7 +242,6 @@ def main_train(param=None):
new_model = create_model(new_model, args.model_output) new_model = create_model(new_model, args.model_output)
if args.model_type in ("inter", "staggered"): if args.model_type in ("inter", "staggered"):
server_tr = np.expand_dims(server_windows_tr, 2)
model = new_model model = new_model
features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value} features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value}
@ -317,7 +365,7 @@ def main_test():
args.data, args.data,
args.domain_length, args.domain_length,
args.window) args.window)
domain_encs, _ = dataset.load_or_generate_domains(args.data, args.domain_length) domain_encs, _, _ = dataset.load_or_generate_domains(args.data, args.domain_length)
for model_args in get_model_args(args): for model_args in get_model_args(args):
results = {} results = {}
@ -488,41 +536,52 @@ def main_visualize_all():
def main_visualize_all_embds(): def main_visualize_all_embds():
import seaborn as sns
def load_df(path): def load_df(path):
res = dataset.load_predictions(path) res = dataset.load_predictions(path)
return res["domain_embds"] return res["domain_embds"]
dfs = [(model_args["model_name"], load_df(model_args["model_path"])) for model_args in get_model_args(args)] dfs = [(model_args["model_name"], load_df(model_args["model_path"])) for model_args in get_model_args(args)]
from sklearn.manifold import TSNE from sklearn.decomposition import TruncatedSVD
def vis2(domain_embedding, labels): def vis2(domain_embedding, labels):
n_levels = 7 n_levels = 7
logger.info(f"reduction for {sub_sample} of {len(domain_embedding)} points") logger.info(f"reduction for {len(domain_embedding)} points")
red = TSNE(n_components=2) red = TruncatedSVD(n_components=2, algorithm="arpack")
domains = red.fit_transform(domain_embedding) domains = red.fit_transform(domain_embedding)
logger.info("plot kde") logger.info("plot kde")
sns.kdeplot(domains[labels.sum(axis=1) == 0, 0], domains[labels.sum(axis=1) == 0, 1], benign = domains[labels.sum(axis=1) == 0]
cmap="Blues", label="benign", n_levels=9, alpha=0.45, shade=True, shade_lowest=False) # print(domains.shape)
sns.kdeplot(domains[labels[:, 1], 0], domains[labels[:, 1], 1], # print(benign.shape)
cmap="Greens", label="server", n_levels=5, alpha=0.45, shade=True, shade_lowest=False) # benign_idx
sns.kdeplot(domains[labels[:, 0], 0], domains[labels[:, 0], 1], # sns.kdeplot(domains[labels.sum(axis=1) == 0, 0], domains[labels.sum(axis=1) == 0, 1],
cmap="Reds", label="client", n_levels=5, alpha=0.45, shade=True, shade_lowest=False) # cmap="Blues", label="benign", n_levels=9, alpha=0.35, shade=True, shade_lowest=False)
# sns.kdeplot(domains[labels[:, 1], 0], domains[labels[:, 1], 1],
domain_encs, labels = dataset.load_or_generate_domains(args.data, args.domain_length) # cmap="Greens", label="server", n_levels=5, alpha=0.35, shade=True, shade_lowest=False)
# sns.kdeplot(domains[labels[:, 0], 0], domains[labels[:, 0], 1],
# cmap="Reds", label="client", n_levels=5, alpha=0.35, shade=True, shade_lowest=False)
plt.scatter(benign[benign_idx, 0], benign[benign_idx, 1],
cmap="Blues", label="benign", alpha=0.35, s=10)
plt.scatter(domains[labels[:, 1], 0], domains[labels[:, 1], 1],
cmap="Greens", label="server", alpha=0.35, s=10)
plt.scatter(domains[labels[:, 0], 0], domains[labels[:, 0], 1],
cmap="Reds", label="client", alpha=0.35, s=10)
return np.concatenate((domains[:1000], domains[1000:2000], domains[2000:3000]), axis=0)
domain_encs, _, labels = dataset.load_or_generate_domains(args.data, args.domain_length)
idx = np.arange(len(labels)) idx = np.arange(len(labels))
client = labels[:, 0] client = labels[:, 0]
server = labels[:, 1] server = labels[:, 1]
benign = np.logical_not(np.logical_and(client, server)) benign = np.logical_not(np.logical_or(client, server))
print(client.sum(), server.sum(), benign.sum()) print(client.sum(), server.sum(), benign.sum())
idx = np.concatenate(( idx = np.concatenate((
np.random.choice(idx[client], 1000), np.random.choice(idx[client], 1000),
np.random.choice(idx[server], 1000), np.random.choice(idx[server], 1000),
np.random.choice(idx[benign], 6000)), axis=0) np.random.choice(idx[benign], 6000)), axis=0)
benign_idx = np.random.choice(np.arange(6000), 1000)
print(idx.shape) print(idx.shape)
lls = labels[idx] lls = labels[idx]
@ -531,7 +590,8 @@ def main_visualize_all_embds():
logger.info(f"plot embedding for {model_name}") logger.info(f"plot embedding for {model_name}")
visualize.plot_clf() visualize.plot_clf()
embd = embd[idx] embd = embd[idx]
vis2(embd, lls) points = vis2(embd, lls)
# np.savetxt("{}_{}.csv".format(args.output_prefix, model_name), points, delimiter=",")
visualize.plot_save("{}_{}.pdf".format(args.output_prefix, model_name)) visualize.plot_save("{}_{}.pdf".format(args.output_prefix, model_name))
@ -644,6 +704,8 @@ def main_beta():
# plot_overall_result() # plot_overall_result()
import matplotlib.pyplot as plt
def plot_overall_result(): def plot_overall_result():
path, model_prefix = os.path.split(os.path.normpath(args.output_prefix)) path, model_prefix = os.path.split(os.path.normpath(args.output_prefix))
try: try:
@ -651,12 +713,10 @@ def plot_overall_result():
except Exception: except Exception:
results = {} results = {}
import matplotlib.pyplot as plt
x = np.linspace(0, 1, 10000) x = np.linspace(0, 1, 10000)
for vis in ["client_window_prc", "client_window_roc", "client_user_prc", "client_user_roc", for vis in ["client_window_prc", "client_window_roc", "client_user_prc", "client_user_roc",
"server_window_prc", "server_window_roc", "server_user_prc", "server_user_roc", "server_window_prc", "server_window_roc", "server_user_prc", "server_user_roc",
"server_flow_prc", "server_flow_roc", "server_domain_prc", "server_domain_roc", "server_flow_prc", "server_flow_roc", "server_domain_prc", "server_domain_roc"]:
"server_domain_avg_prc", "server_domain_avg_roc"]:
logger.info(f"plot {vis}") logger.info(f"plot {vis}")
visualize.plot_clf() visualize.plot_clf()
for model_key in results.keys(): for model_key in results.keys():
@ -667,22 +727,23 @@ def plot_overall_result():
ys_mean, ys_std, ys = results[model_key]["all"][vis] ys_mean, ys_std, ys = results[model_key]["all"][vis]
plt.plot(x, ys_mean, label=f"{model_key} - {np.mean(ys_mean):5.4} ({np.mean(ys_std):4.3})") plt.plot(x, ys_mean, label=f"{model_key} - {np.mean(ys_mean):5.4} ({np.mean(ys_std):4.3})")
plt.fill_between(x, ys_mean - ys_std, ys_mean + ys_std, alpha=0.2) plt.fill_between(x, ys_mean - ys_std, ys_mean + ys_std, alpha=0.2)
if vis.endswith("prc"): if vis.endswith("prc"):
plt.xlabel('Recall') plt.xlabel('Recall')
plt.ylabel('Precision') plt.ylabel('Precision')
else: else:
plt.xlabel('False Positive Rate') plt.plot(x, x, label="random classifier", ls="--", c=".3", alpha=0.4)
plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate')
plt.xscale('log') plt.ylabel('True Positive Rate')
plt.ylim([0.0, 1.0]) plt.xscale('log')
plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0])
plt.xlim([0.0, 1.0])
visualize.plot_legend() visualize.plot_legend()
visualize.plot_save(f"{path}/figs/curves/{vis}_all.pdf") visualize.plot_save(f"{path}/figs/curves/{vis}_all.pdf")
return
for vis in ["client_window_prc", "client_window_roc", "client_user_prc", "client_user_roc", for vis in ["client_window_prc", "client_window_roc", "client_user_prc", "client_user_roc",
"server_window_prc", "server_window_roc", "server_user_prc", "server_user_roc", "server_window_prc", "server_window_roc", "server_user_prc", "server_user_roc",
"server_flow_prc", "server_flow_roc", "server_domain_prc", "server_domain_roc", "server_flow_prc", "server_flow_roc", "server_domain_prc", "server_domain_roc"]:
"server_domain_avg_prc", "server_domain_avg_roc"]:
logger.info(f"plot {vis}") logger.info(f"plot {vis}")
visualize.plot_clf() visualize.plot_clf()
for model_key in results.keys(): for model_key in results.keys():
@ -693,26 +754,76 @@ def plot_overall_result():
_, _, ys = results[model_key]["all"][vis] _, _, ys = results[model_key]["all"][vis]
for y in ys: for y in ys:
plt.plot(x, y, label=f"{model_key} - {np.mean(y):5.4}") plt.plot(x, y, label=f"{model_key} - {np.mean(y):5.4}")
if vis.endswith("prc"): if vis.endswith("prc"):
plt.xlabel('Recall') plt.xlabel('Recall')
plt.ylabel('Precision') plt.ylabel('Precision')
else: else:
plt.xlabel('False Positive Rate') plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate') plt.ylabel('True Positive Rate')
plt.xscale('log') plt.xscale('log')
plt.ylim([0.0, 1.0]) plt.ylim([0.0, 1.0])
plt.xlim([0.0, 1.0]) plt.xlim([0.0, 1.0])
visualize.plot_legend() visualize.plot_legend()
visualize.plot_save(f"{path}/figs/appendix/{model_key}_{vis}.pdf") visualize.plot_save(f"{path}/figs/Appendices/{model_key}_{vis}.pdf")
def main_stats():
path, model_prefix = os.path.split(os.path.normpath(args.output_prefix))
for time in ("current", "future"):
df = dataset.get_user_flow_data(f"data/{time}Data.csv.gz")
df["clientlabel"] = np.logical_or(df.virusTotalHits > 3, df.trustedHits > 0)
# df_user = df.groupby(df.user_hash).max()
# df_server = df.groupby(df.domain).max()
# len(df)
# df.clientlabel.sum()
# df.serverLabel.sum()
for col in ["duration", "bytes_down", "bytes_up"]:
# visualize.plot_clf()
plt.clf()
plt.hist(df[col])
visualize.plot_save(f"{path}/figs/hist_{time}_{col}.pdf")
print(".")
# visualize.plot_clf()
plt.clf()
plt.hist(np.log1p(df[col]))
visualize.plot_save(f"{path}/figs/hist_{time}_norm_{col}.pdf")
print("-")
def main_stats2():
import joblib
res = joblib.load("results/variance_test_hyper/curves.joblib")
for vis in ["client_window_prc", "client_window_roc", "client_user_prc", "client_user_roc",
"server_window_prc", "server_window_roc", "server_user_prc", "server_user_roc",
"server_flow_prc", "server_flow_roc", "server_domain_prc", "server_domain_roc",
"server_domain_avg_prc", "server_domain_avg_roc"]:
tab = []
for m, r in res.items():
if vis not in r: continue
tab.append(r["all"][vis][2].mean(axis=1))
if not tab: continue
df = pd.DataFrame(data=np.vstack(tab).T, columns=list(res.keys()),
index=range(1, 21))
df.to_csv(f"{vis}.csv")
print(f"% {vis}")
print(df.round(4).to_latex())
print()
def main(): def main():
if "train" == args.mode: if "train" == args.mode:
main_train() main_train()
if "retrain" == args.mode: if "retrain" == args.mode:
main_retrain() main_retrain()
if "hyperband" == args.mode: if "hyperband" == args.mode:
main_hyperband() main_hyperband(args.data, args.domain_length, args.window, args.model_type, args.hyperband_results)
if "test" == args.mode: if "test" == args.mode:
main_test() main_test()
if "fancy" == args.mode: if "fancy" == args.mode:
@ -729,6 +840,8 @@ def main():
test_server_only() test_server_only()
if "embedding" == args.mode: if "embedding" == args.mode:
main_visualize_all_embds() main_visualize_all_embds()
if "stats" == args.mode:
main_stats()
if __name__ == "__main__": if __name__ == "__main__":