refactor network models; remove depths
This commit is contained in:
parent
e12bbda8c5
commit
826357a41f
21
main.py
21
main.py
@ -132,7 +132,26 @@ def shuffle_training_data(domain, flow, client, server):
|
|||||||
|
|
||||||
|
|
||||||
def main_paul_best():
|
def main_paul_best():
|
||||||
pauls_best_params = models.pauls_networks.best_config
|
pauls_best_params = best_config = {
|
||||||
|
"type": "paul",
|
||||||
|
"batch_size": 64,
|
||||||
|
"window_size": 10,
|
||||||
|
"domain_length": 40,
|
||||||
|
"flow_features": 3,
|
||||||
|
#
|
||||||
|
'dropout': 0.5,
|
||||||
|
'domain_features': 32,
|
||||||
|
'drop_out': 0.5,
|
||||||
|
'embedding_size': 64,
|
||||||
|
'filter_main': 512,
|
||||||
|
'flow_features': 3,
|
||||||
|
'dense_main': 32,
|
||||||
|
'filter_embedding': 32,
|
||||||
|
'hidden_embedding': 32,
|
||||||
|
'kernel_embedding': 8,
|
||||||
|
'kernels_main': 8,
|
||||||
|
'input_length': 40
|
||||||
|
}
|
||||||
main_train(pauls_best_params)
|
main_train(pauls_best_params)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,9 +1,7 @@
|
|||||||
import keras.backend as K
|
|
||||||
from keras.models import Model
|
from keras.models import Model
|
||||||
|
|
||||||
from models import deep1
|
from . import networks
|
||||||
from models.renes_networks import selu
|
from .metrics import *
|
||||||
from . import flat_2, pauls_networks, renes_networks
|
|
||||||
|
|
||||||
|
|
||||||
def create_model(model, output_type):
|
def create_model(model, output_type):
|
||||||
@ -13,7 +11,7 @@ def create_model(model, output_type):
|
|||||||
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
|
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
|
||||||
else:
|
else:
|
||||||
raise Exception("unknown model output")
|
raise Exception("unknown model output")
|
||||||
|
|
||||||
|
|
||||||
def get_models_by_params(params: dict):
|
def get_models_by_params(params: dict):
|
||||||
# decomposing param section
|
# decomposing param section
|
||||||
@ -33,36 +31,25 @@ def get_models_by_params(params: dict):
|
|||||||
kernel_main = params.get("kernel_main")
|
kernel_main = params.get("kernel_main")
|
||||||
dense_dim = params.get("dense_main")
|
dense_dim = params.get("dense_main")
|
||||||
model_output = params.get("model_output", "both")
|
model_output = params.get("model_output", "both")
|
||||||
# create models
|
|
||||||
if network_depth == "flat1":
|
|
||||||
networks = pauls_networks
|
|
||||||
elif network_depth == "flat2":
|
|
||||||
networks = flat_2
|
|
||||||
elif network_depth == "deep1":
|
|
||||||
networks = deep1
|
|
||||||
elif network_depth == "deep2":
|
|
||||||
networks = renes_networks
|
|
||||||
else:
|
|
||||||
raise ValueError("network not found")
|
|
||||||
|
|
||||||
domain_cnn = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
|
||||||
hidden_embedding, 0.5)
|
|
||||||
|
|
||||||
|
domain_cnn = networks.get_domain_embedding_model(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
||||||
|
hidden_embedding, 0.5)
|
||||||
|
|
||||||
if network_type == "final":
|
if network_type == "final":
|
||||||
model = networks.get_model(0.25, flow_features, window_size, domain_length,
|
model = networks.get_final_model(0.25, flow_features, window_size, domain_length,
|
||||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||||
model = create_model(model, model_output)
|
model = create_model(model, model_output)
|
||||||
elif network_type in ("inter", "staggered"):
|
elif network_type in ("inter", "staggered"):
|
||||||
model = networks.get_new_model(0.25, flow_features, window_size, domain_length,
|
model = networks.get_inter_model(0.25, flow_features, window_size, domain_length,
|
||||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||||
model = create_model(model, model_output)
|
model = create_model(model, model_output)
|
||||||
elif network_type == "long":
|
elif network_type == "long":
|
||||||
model = networks.get_new_model2(0.25, flow_features, window_size, domain_length,
|
model = networks.get_long_model(0.25, flow_features, window_size, domain_length,
|
||||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||||
model = create_model(model, model_output)
|
model = create_model(model, model_output)
|
||||||
elif network_type == "soft":
|
elif network_type == "soft":
|
||||||
model = networks.get_new_soft(0.25, flow_features, window_size, domain_length,
|
model = networks.get_long_model(0.25, flow_features, window_size, domain_length,
|
||||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||||
model = create_model(model, model_output)
|
model = create_model(model, model_output)
|
||||||
conv_server = model.get_layer("conv_server").trainable_weights
|
conv_server = model.get_layer("conv_server").trainable_weights
|
||||||
conv_client = model.get_layer("conv_client").trainable_weights
|
conv_client = model.get_layer("conv_client").trainable_weights
|
||||||
@ -92,68 +79,9 @@ def get_server_model_by_params(params: dict):
|
|||||||
flow_features = params.get("flow_features")
|
flow_features = params.get("flow_features")
|
||||||
domain_length = params.get("domain_length")
|
domain_length = params.get("domain_length")
|
||||||
dense_dim = params.get("dense_main")
|
dense_dim = params.get("dense_main")
|
||||||
# create models
|
|
||||||
if network_depth == "flat1":
|
embedding_model = networks.get_domain_embedding_model(embedding_size, input_length, filter_embedding,
|
||||||
networks = pauls_networks
|
kernel_embedding,
|
||||||
elif network_depth == "flat2":
|
hidden_embedding, 0.5)
|
||||||
networks = flat_2
|
|
||||||
elif network_depth == "deep1":
|
|
||||||
networks = deep1
|
|
||||||
elif network_depth == "deep2":
|
|
||||||
networks = renes_networks
|
|
||||||
else:
|
|
||||||
raise Exception("network not found")
|
|
||||||
|
|
||||||
embedding_model = networks.get_embedding(embedding_size, input_length, filter_embedding, kernel_embedding,
|
|
||||||
hidden_embedding, 0.5)
|
|
||||||
|
|
||||||
return networks.get_server_model(flow_features, domain_length, dense_dim, embedding_model)
|
return networks.get_server_model(flow_features, domain_length, dense_dim, embedding_model)
|
||||||
|
|
||||||
|
|
||||||
def get_custom_objects():
|
|
||||||
return dict([
|
|
||||||
("precision", precision),
|
|
||||||
("recall", recall),
|
|
||||||
("f1_score", f1_score),
|
|
||||||
("selu", selu)
|
|
||||||
])
|
|
||||||
|
|
||||||
|
|
||||||
def get_metric_functions():
|
|
||||||
return [precision, recall, f1_score]
|
|
||||||
|
|
||||||
|
|
||||||
def precision(y_true, y_pred):
|
|
||||||
# Count positive samples.
|
|
||||||
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
|
|
||||||
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
|
|
||||||
return true_positives / (predicted_positives + K.epsilon())
|
|
||||||
|
|
||||||
|
|
||||||
def recall(y_true, y_pred):
|
|
||||||
# Count positive samples.
|
|
||||||
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
|
|
||||||
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
|
|
||||||
return true_positives / (possible_positives + K.epsilon())
|
|
||||||
|
|
||||||
|
|
||||||
def f1_score(y_true, y_pred):
|
|
||||||
return f_score(1)(y_true, y_pred)
|
|
||||||
|
|
||||||
|
|
||||||
def f05_score(y_true, y_pred):
|
|
||||||
return f_score(0.5)(y_true, y_pred)
|
|
||||||
|
|
||||||
|
|
||||||
def f_score(beta):
|
|
||||||
def _f(y_true, y_pred):
|
|
||||||
p = precision(y_true, y_pred)
|
|
||||||
r = recall(y_true, y_pred)
|
|
||||||
|
|
||||||
bb = beta ** 2
|
|
||||||
|
|
||||||
fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
|
|
||||||
|
|
||||||
return fbeta_score
|
|
||||||
|
|
||||||
return _f
|
|
||||||
|
@ -1,70 +0,0 @@
|
|||||||
from collections import namedtuple
|
|
||||||
|
|
||||||
import keras
|
|
||||||
from keras.engine import Input, Model as KerasModel
|
|
||||||
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, GlobalMaxPooling1D, TimeDistributed
|
|
||||||
|
|
||||||
import dataset
|
|
||||||
|
|
||||||
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
|
||||||
|
|
||||||
|
|
||||||
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5):
|
|
||||||
x = Input(shape=(input_length,))
|
|
||||||
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(x)
|
|
||||||
y = Conv1D(filter_size, kernel_size=kernel_size, activation="relu", padding="same")(y)
|
|
||||||
y = Conv1D(filter_size, kernel_size=3, activation="relu", padding="same")(y)
|
|
||||||
y = Conv1D(filter_size, kernel_size=3, activation="relu", padding="same")(y)
|
|
||||||
y = GlobalAveragePooling1D()(y)
|
|
||||||
y = Dense(hidden_dims, activation="relu")(y)
|
|
||||||
return KerasModel(x, y)
|
|
||||||
|
|
||||||
|
|
||||||
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn, model_output="both"):
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation="relu", padding="same",
|
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(cnnDropout)(y)
|
|
||||||
y = Dense(dense_dim, activation="relu")(y)
|
|
||||||
y = Dense(dense_dim, activation="relu")(y)
|
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
||||||
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
|
||||||
|
|
||||||
|
|
||||||
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn, model_output="both"):
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
||||||
y = Dense(dense_dim, activation="relu")(merged)
|
|
||||||
y = Dense(dense_dim,
|
|
||||||
activation="relu",
|
|
||||||
name="dense_server")(y)
|
|
||||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
||||||
merged = keras.layers.concatenate([merged, y], -1)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
y = Conv1D(filters=cnn_dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
activation="relu",
|
|
||||||
padding="same",
|
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(dropout)(y)
|
|
||||||
y = Dense(dense_dim, activation="relu")(y)
|
|
||||||
y = Dense(dense_dim,
|
|
||||||
activation="relu",
|
|
||||||
name="dense_client")(y)
|
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
|
@ -1,85 +0,0 @@
|
|||||||
from collections import namedtuple
|
|
||||||
|
|
||||||
import keras
|
|
||||||
from keras.activations import elu
|
|
||||||
from keras.engine import Input, Model as KerasModel
|
|
||||||
from keras.layers import BatchNormalization, Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, \
|
|
||||||
GlobalMaxPooling1D, TimeDistributed
|
|
||||||
|
|
||||||
import dataset
|
|
||||||
|
|
||||||
|
|
||||||
def selu(x):
|
|
||||||
"""Scaled Exponential Linear Unit. (Klambauer et al., 2017)
|
|
||||||
# Arguments
|
|
||||||
x: A tensor or variable to compute the activation function for.
|
|
||||||
# References
|
|
||||||
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
|
|
||||||
# copied from keras.io
|
|
||||||
"""
|
|
||||||
alpha = 1.6732632423543772848170429916717
|
|
||||||
scale = 1.0507009873554804934193349852946
|
|
||||||
return scale * elu(x, alpha)
|
|
||||||
|
|
||||||
|
|
||||||
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
|
||||||
|
|
||||||
|
|
||||||
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5) -> KerasModel:
|
|
||||||
x = y = Input(shape=(input_length,))
|
|
||||||
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
|
||||||
y = Conv1D(filter_size,
|
|
||||||
kernel_size,
|
|
||||||
activation=selu)(y)
|
|
||||||
y = GlobalAveragePooling1D()(y)
|
|
||||||
y = Dense(hidden_dims, activation=selu)(y)
|
|
||||||
return KerasModel(x, y)
|
|
||||||
|
|
||||||
|
|
||||||
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn, model_output="both") -> Model:
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
y = BatchNormalization()(ipt_flows)
|
|
||||||
y = Dense(dense_dim, activation=selu)(y)
|
|
||||||
merged = keras.layers.concatenate([encoded, y], -1)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
y = Conv1D(cnn_dims,
|
|
||||||
kernel_size,
|
|
||||||
activation=selu,
|
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(cnnDropout)(y)
|
|
||||||
y = Dense(dense_dim, activation=selu)(y)
|
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
||||||
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
|
||||||
|
|
||||||
|
|
||||||
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn, model_output="both") -> Model:
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
||||||
y = Dense(dense_dim, activation=selu)(merged)
|
|
||||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
||||||
merged = keras.layers.concatenate([merged, y], -1)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
y = Conv1D(filters=cnn_dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
activation=selu,
|
|
||||||
padding="same",
|
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(dropout)(y)
|
|
||||||
y = Dense(dense_dim,
|
|
||||||
activation=selu,
|
|
||||||
name="dense_client")(y)
|
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
|
64
models/metrics.py
Normal file
64
models/metrics.py
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
import keras.backend as K
|
||||||
|
from keras.activations import elu
|
||||||
|
|
||||||
|
|
||||||
|
def get_custom_objects():
|
||||||
|
return dict([
|
||||||
|
("precision", precision),
|
||||||
|
("recall", recall),
|
||||||
|
("f1_score", f1_score),
|
||||||
|
("selu", selu)
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
def selu(x):
|
||||||
|
"""Scaled Exponential Linear Unit. (Klambauer et al., 2017)
|
||||||
|
# Arguments
|
||||||
|
x: A tensor or variable to compute the activation function for.
|
||||||
|
# References
|
||||||
|
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
|
||||||
|
# copied from keras.io
|
||||||
|
"""
|
||||||
|
alpha = 1.6732632423543772848170429916717
|
||||||
|
scale = 1.0507009873554804934193349852946
|
||||||
|
return scale * elu(x, alpha)
|
||||||
|
|
||||||
|
|
||||||
|
def get_metric_functions():
|
||||||
|
return [precision, recall, f1_score]
|
||||||
|
|
||||||
|
|
||||||
|
def precision(y_true, y_pred):
|
||||||
|
# Count positive samples.
|
||||||
|
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
|
||||||
|
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
|
||||||
|
return true_positives / (predicted_positives + K.epsilon())
|
||||||
|
|
||||||
|
|
||||||
|
def recall(y_true, y_pred):
|
||||||
|
# Count positive samples.
|
||||||
|
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
|
||||||
|
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
|
||||||
|
return true_positives / (possible_positives + K.epsilon())
|
||||||
|
|
||||||
|
|
||||||
|
def f1_score(y_true, y_pred):
|
||||||
|
return f_score(1)(y_true, y_pred)
|
||||||
|
|
||||||
|
|
||||||
|
def f05_score(y_true, y_pred):
|
||||||
|
return f_score(0.5)(y_true, y_pred)
|
||||||
|
|
||||||
|
|
||||||
|
def f_score(beta):
|
||||||
|
def _f(y_true, y_pred):
|
||||||
|
p = precision(y_true, y_pred)
|
||||||
|
r = recall(y_true, y_pred)
|
||||||
|
|
||||||
|
bb = beta ** 2
|
||||||
|
|
||||||
|
fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
|
||||||
|
|
||||||
|
return fbeta_score
|
||||||
|
|
||||||
|
return _f
|
@ -8,29 +8,9 @@ import dataset
|
|||||||
|
|
||||||
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
||||||
|
|
||||||
best_config = {
|
|
||||||
"type": "paul",
|
|
||||||
"batch_size": 64,
|
|
||||||
"window_size": 10,
|
|
||||||
"domain_length": 40,
|
|
||||||
"flow_features": 3,
|
|
||||||
#
|
|
||||||
'dropout': 0.5,
|
|
||||||
'domain_features': 32,
|
|
||||||
'drop_out': 0.5,
|
|
||||||
'embedding_size': 64,
|
|
||||||
'filter_main': 512,
|
|
||||||
'flow_features': 3,
|
|
||||||
'dense_main': 32,
|
|
||||||
'filter_embedding': 32,
|
|
||||||
'hidden_embedding': 32,
|
|
||||||
'kernel_embedding': 8,
|
|
||||||
'kernels_main': 8,
|
|
||||||
'input_length': 40
|
|
||||||
}
|
|
||||||
|
|
||||||
|
def get_domain_embedding_model(embedding_size, input_length, filter_size, kernel_size, hidden_dims,
|
||||||
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5) -> KerasModel:
|
drop_out=0.5) -> KerasModel:
|
||||||
x = y = Input(shape=(input_length,))
|
x = y = Input(shape=(input_length,))
|
||||||
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
||||||
y = Conv1D(filter_size,
|
y = Conv1D(filter_size,
|
||||||
@ -42,8 +22,8 @@ def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden
|
|||||||
return KerasModel(x, y)
|
return KerasModel(x, y)
|
||||||
|
|
||||||
|
|
||||||
def get_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
def get_final_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
dense_dim, cnn) -> Model:
|
dense_dim, cnn) -> Model:
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
@ -62,8 +42,8 @@ def get_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, k
|
|||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||||
|
|
||||||
|
|
||||||
def get_new_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
def get_inter_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
dense_dim, cnn) -> Model:
|
dense_dim, cnn) -> Model:
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||||
@ -104,7 +84,7 @@ def get_server_model(flow_features, domain_length, dense_dim, cnn):
|
|||||||
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
|
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
|
||||||
|
|
||||||
|
|
||||||
def get_new_model2(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
def get_long_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
dense_dim, cnn) -> Model:
|
dense_dim, cnn) -> Model:
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
@ -112,7 +92,7 @@ def get_new_model2(dropout, flow_features, window_size, domain_length, cnn_dims,
|
|||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||||
y = Conv1D(cnn_dims,
|
y = Conv1D(cnn_dims,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
activation='relu')(merged)
|
activation='relu', name="conv_server")(merged)
|
||||||
# remove temporal dimension by global max pooling
|
# remove temporal dimension by global max pooling
|
||||||
y = GlobalMaxPooling1D()(y)
|
y = GlobalMaxPooling1D()(y)
|
||||||
y = Dropout(dropout)(y)
|
y = Dropout(dropout)(y)
|
||||||
@ -121,39 +101,6 @@ def get_new_model2(dropout, flow_features, window_size, domain_length, cnn_dims,
|
|||||||
name="dense_server")(y)
|
name="dense_server")(y)
|
||||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
||||||
# CNN processing a small slides of flow windows
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(cnn_dims,
|
|
||||||
kernel_size,
|
|
||||||
activation='relu')(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(dropout)(y)
|
|
||||||
y = Dense(dense_dim,
|
|
||||||
activation='relu',
|
|
||||||
name="dense_client")(y)
|
|
||||||
|
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
|
||||||
|
|
||||||
|
|
||||||
def get_new_soft(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn) -> Model:
|
|
||||||
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
||||||
y = conv_server = Conv1D(cnn_dims,
|
|
||||||
kernel_size,
|
|
||||||
activation='relu', name="conv_server")(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(dropout)(y)
|
|
||||||
y = dense_server = Dense(dense_dim,
|
|
||||||
activation="relu",
|
|
||||||
name="dense_server")(y)
|
|
||||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
y = Conv1D(cnn_dims,
|
y = Conv1D(cnn_dims,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
activation='relu', name="conv_client")(merged)
|
activation='relu', name="conv_client")(merged)
|
@ -1,103 +0,0 @@
|
|||||||
from collections import namedtuple
|
|
||||||
|
|
||||||
import keras
|
|
||||||
from keras.activations import elu
|
|
||||||
from keras.engine import Input, Model as KerasModel
|
|
||||||
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, GlobalMaxPooling1D, MaxPool1D, \
|
|
||||||
TimeDistributed
|
|
||||||
|
|
||||||
import dataset
|
|
||||||
|
|
||||||
|
|
||||||
def selu(x):
|
|
||||||
"""Scaled Exponential Linear Unit. (Klambauer et al., 2017)
|
|
||||||
# Arguments
|
|
||||||
x: A tensor or variable to compute the activation function for.
|
|
||||||
# References
|
|
||||||
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
|
|
||||||
# copied from keras.io
|
|
||||||
"""
|
|
||||||
alpha = 1.6732632423543772848170429916717
|
|
||||||
scale = 1.0507009873554804934193349852946
|
|
||||||
return scale * elu(x, alpha)
|
|
||||||
|
|
||||||
|
|
||||||
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
|
||||||
|
|
||||||
|
|
||||||
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5):
|
|
||||||
x = y = Input(shape=(input_length,))
|
|
||||||
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
|
||||||
y = Conv1D(filter_size, kernel_size=5, activation=selu)(y)
|
|
||||||
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
|
|
||||||
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
|
|
||||||
y = GlobalAveragePooling1D()(y)
|
|
||||||
y = Dense(hidden_dims, activation=selu)(y)
|
|
||||||
return KerasModel(x, y)
|
|
||||||
|
|
||||||
|
|
||||||
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn, model_output="both"):
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same",
|
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same")(y)
|
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same")(y)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(cnnDropout)(y)
|
|
||||||
y = Dense(dense_dim, activation=selu)(y)
|
|
||||||
y = Dense(dense_dim, activation=selu)(y)
|
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
||||||
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
|
||||||
|
|
||||||
|
|
||||||
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn, model_output="both"):
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
||||||
y = Dense(dense_dim, activation=selu)(merged)
|
|
||||||
y = Dense(dense_dim,
|
|
||||||
activation="relu",
|
|
||||||
name="dense_server")(y)
|
|
||||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
||||||
merged = keras.layers.concatenate([merged, y], -1)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
y = Conv1D(filters=cnn_dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
activation=selu,
|
|
||||||
padding="same",
|
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
y = MaxPool1D(pool_size=3,
|
|
||||||
strides=1)(y)
|
|
||||||
y = Conv1D(filters=cnn_dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
activation=selu,
|
|
||||||
padding="same")(y)
|
|
||||||
y = MaxPool1D(pool_size=3,
|
|
||||||
strides=1)(y)
|
|
||||||
y = Conv1D(filters=cnn_dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
activation=selu,
|
|
||||||
padding="same")(y)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(dropout)(y)
|
|
||||||
y = Dense(dense_dim, activation=selu)(y)
|
|
||||||
y = Dense(dense_dim,
|
|
||||||
activation=selu,
|
|
||||||
name="dense_client")(y)
|
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user