refactor network models; remove depths

This commit is contained in:
René Knaebel 2017-11-07 20:32:08 +01:00
parent e12bbda8c5
commit 826357a41f
7 changed files with 109 additions and 409 deletions

21
main.py
View File

@ -132,7 +132,26 @@ def shuffle_training_data(domain, flow, client, server):
def main_paul_best(): def main_paul_best():
pauls_best_params = models.pauls_networks.best_config pauls_best_params = best_config = {
"type": "paul",
"batch_size": 64,
"window_size": 10,
"domain_length": 40,
"flow_features": 3,
#
'dropout': 0.5,
'domain_features': 32,
'drop_out': 0.5,
'embedding_size': 64,
'filter_main': 512,
'flow_features': 3,
'dense_main': 32,
'filter_embedding': 32,
'hidden_embedding': 32,
'kernel_embedding': 8,
'kernels_main': 8,
'input_length': 40
}
main_train(pauls_best_params) main_train(pauls_best_params)

View File

@ -1,9 +1,7 @@
import keras.backend as K
from keras.models import Model from keras.models import Model
from models import deep1 from . import networks
from models.renes_networks import selu from .metrics import *
from . import flat_2, pauls_networks, renes_networks
def create_model(model, output_type): def create_model(model, output_type):
@ -33,35 +31,24 @@ def get_models_by_params(params: dict):
kernel_main = params.get("kernel_main") kernel_main = params.get("kernel_main")
dense_dim = params.get("dense_main") dense_dim = params.get("dense_main")
model_output = params.get("model_output", "both") model_output = params.get("model_output", "both")
# create models
if network_depth == "flat1":
networks = pauls_networks
elif network_depth == "flat2":
networks = flat_2
elif network_depth == "deep1":
networks = deep1
elif network_depth == "deep2":
networks = renes_networks
else:
raise ValueError("network not found")
domain_cnn = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding, domain_cnn = networks.get_domain_embedding_model(embedding_size, domain_length, filter_embedding, kernel_embedding,
hidden_embedding, 0.5) hidden_embedding, 0.5)
if network_type == "final": if network_type == "final":
model = networks.get_model(0.25, flow_features, window_size, domain_length, model = networks.get_final_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn) filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output) model = create_model(model, model_output)
elif network_type in ("inter", "staggered"): elif network_type in ("inter", "staggered"):
model = networks.get_new_model(0.25, flow_features, window_size, domain_length, model = networks.get_inter_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn) filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output) model = create_model(model, model_output)
elif network_type == "long": elif network_type == "long":
model = networks.get_new_model2(0.25, flow_features, window_size, domain_length, model = networks.get_long_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn) filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output) model = create_model(model, model_output)
elif network_type == "soft": elif network_type == "soft":
model = networks.get_new_soft(0.25, flow_features, window_size, domain_length, model = networks.get_long_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn) filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output) model = create_model(model, model_output)
conv_server = model.get_layer("conv_server").trainable_weights conv_server = model.get_layer("conv_server").trainable_weights
@ -92,68 +79,9 @@ def get_server_model_by_params(params: dict):
flow_features = params.get("flow_features") flow_features = params.get("flow_features")
domain_length = params.get("domain_length") domain_length = params.get("domain_length")
dense_dim = params.get("dense_main") dense_dim = params.get("dense_main")
# create models
if network_depth == "flat1":
networks = pauls_networks
elif network_depth == "flat2":
networks = flat_2
elif network_depth == "deep1":
networks = deep1
elif network_depth == "deep2":
networks = renes_networks
else:
raise Exception("network not found")
embedding_model = networks.get_embedding(embedding_size, input_length, filter_embedding, kernel_embedding, embedding_model = networks.get_domain_embedding_model(embedding_size, input_length, filter_embedding,
kernel_embedding,
hidden_embedding, 0.5) hidden_embedding, 0.5)
return networks.get_server_model(flow_features, domain_length, dense_dim, embedding_model) return networks.get_server_model(flow_features, domain_length, dense_dim, embedding_model)
def get_custom_objects():
return dict([
("precision", precision),
("recall", recall),
("f1_score", f1_score),
("selu", selu)
])
def get_metric_functions():
return [precision, recall, f1_score]
def precision(y_true, y_pred):
# Count positive samples.
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
return true_positives / (predicted_positives + K.epsilon())
def recall(y_true, y_pred):
# Count positive samples.
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
return true_positives / (possible_positives + K.epsilon())
def f1_score(y_true, y_pred):
return f_score(1)(y_true, y_pred)
def f05_score(y_true, y_pred):
return f_score(0.5)(y_true, y_pred)
def f_score(beta):
def _f(y_true, y_pred):
p = precision(y_true, y_pred)
r = recall(y_true, y_pred)
bb = beta ** 2
fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
return fbeta_score
return _f

View File

@ -1,70 +0,0 @@
from collections import namedtuple
import keras
from keras.engine import Input, Model as KerasModel
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, GlobalMaxPooling1D, TimeDistributed
import dataset
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5):
x = Input(shape=(input_length,))
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(x)
y = Conv1D(filter_size, kernel_size=kernel_size, activation="relu", padding="same")(y)
y = Conv1D(filter_size, kernel_size=3, activation="relu", padding="same")(y)
y = Conv1D(filter_size, kernel_size=3, activation="relu", padding="same")(y)
y = GlobalAveragePooling1D()(y)
y = Dense(hidden_dims, activation="relu")(y)
return KerasModel(x, y)
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both"):
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
# CNN processing a small slides of flow windows
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation="relu", padding="same",
input_shape=(window_size, domain_features + flow_features))(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
y = Dense(dense_dim, activation="relu")(y)
y = Dense(dense_dim, activation="relu")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
out_server = Dense(1, activation='sigmoid', name="server")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both"):
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Dense(dense_dim, activation="relu")(merged)
y = Dense(dense_dim,
activation="relu",
name="dense_server")(y)
out_server = Dense(1, activation="sigmoid", name="server")(y)
merged = keras.layers.concatenate([merged, y], -1)
# CNN processing a small slides of flow windows
y = Conv1D(filters=cnn_dims,
kernel_size=kernel_size,
activation="relu",
padding="same",
input_shape=(window_size, domain_features + flow_features))(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim, activation="relu")(y)
y = Dense(dense_dim,
activation="relu",
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)

View File

@ -1,85 +0,0 @@
from collections import namedtuple
import keras
from keras.activations import elu
from keras.engine import Input, Model as KerasModel
from keras.layers import BatchNormalization, Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, \
GlobalMaxPooling1D, TimeDistributed
import dataset
def selu(x):
"""Scaled Exponential Linear Unit. (Klambauer et al., 2017)
# Arguments
x: A tensor or variable to compute the activation function for.
# References
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
# copied from keras.io
"""
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
return scale * elu(x, alpha)
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5) -> KerasModel:
x = y = Input(shape=(input_length,))
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
y = Conv1D(filter_size,
kernel_size,
activation=selu)(y)
y = GlobalAveragePooling1D()(y)
y = Dense(hidden_dims, activation=selu)(y)
return KerasModel(x, y)
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
y = BatchNormalization()(ipt_flows)
y = Dense(dense_dim, activation=selu)(y)
merged = keras.layers.concatenate([encoded, y], -1)
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
activation=selu,
input_shape=(window_size, domain_features + flow_features))(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
y = Dense(dense_dim, activation=selu)(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
out_server = Dense(1, activation='sigmoid', name="server")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Dense(dense_dim, activation=selu)(merged)
out_server = Dense(1, activation="sigmoid", name="server")(y)
merged = keras.layers.concatenate([merged, y], -1)
# CNN processing a small slides of flow windows
y = Conv1D(filters=cnn_dims,
kernel_size=kernel_size,
activation=selu,
padding="same",
input_shape=(window_size, domain_features + flow_features))(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim,
activation=selu,
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)

64
models/metrics.py Normal file
View File

@ -0,0 +1,64 @@
import keras.backend as K
from keras.activations import elu
def get_custom_objects():
return dict([
("precision", precision),
("recall", recall),
("f1_score", f1_score),
("selu", selu)
])
def selu(x):
"""Scaled Exponential Linear Unit. (Klambauer et al., 2017)
# Arguments
x: A tensor or variable to compute the activation function for.
# References
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
# copied from keras.io
"""
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
return scale * elu(x, alpha)
def get_metric_functions():
return [precision, recall, f1_score]
def precision(y_true, y_pred):
# Count positive samples.
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
return true_positives / (predicted_positives + K.epsilon())
def recall(y_true, y_pred):
# Count positive samples.
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
return true_positives / (possible_positives + K.epsilon())
def f1_score(y_true, y_pred):
return f_score(1)(y_true, y_pred)
def f05_score(y_true, y_pred):
return f_score(0.5)(y_true, y_pred)
def f_score(beta):
def _f(y_true, y_pred):
p = precision(y_true, y_pred)
r = recall(y_true, y_pred)
bb = beta ** 2
fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
return fbeta_score
return _f

View File

@ -8,29 +8,9 @@ import dataset
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"]) Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
best_config = {
"type": "paul",
"batch_size": 64,
"window_size": 10,
"domain_length": 40,
"flow_features": 3,
#
'dropout': 0.5,
'domain_features': 32,
'drop_out': 0.5,
'embedding_size': 64,
'filter_main': 512,
'flow_features': 3,
'dense_main': 32,
'filter_embedding': 32,
'hidden_embedding': 32,
'kernel_embedding': 8,
'kernels_main': 8,
'input_length': 40
}
def get_domain_embedding_model(embedding_size, input_length, filter_size, kernel_size, hidden_dims,
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5) -> KerasModel: drop_out=0.5) -> KerasModel:
x = y = Input(shape=(input_length,)) x = y = Input(shape=(input_length,))
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y) y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
y = Conv1D(filter_size, y = Conv1D(filter_size,
@ -42,7 +22,7 @@ def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden
return KerasModel(x, y) return KerasModel(x, y)
def get_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size, def get_final_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model: dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains") ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains) encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
@ -62,7 +42,7 @@ def get_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, k
return Model(ipt_domains, ipt_flows, out_client, out_server) return Model(ipt_domains, ipt_flows, out_client, out_server)
def get_new_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size, def get_inter_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model: dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains") ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows") ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
@ -104,52 +84,19 @@ def get_server_model(flow_features, domain_length, dense_dim, cnn):
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server) return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
def get_new_model2(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size, def get_long_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model: dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains") ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows") ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains) encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1) merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Conv1D(cnn_dims, y = Conv1D(cnn_dims,
kernel_size,
activation='relu')(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim,
activation="relu",
name="dense_server")(y)
out_server = Dense(1, activation="sigmoid", name="server")(y)
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
activation='relu')(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim,
activation='relu',
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)
def get_new_soft(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = conv_server = Conv1D(cnn_dims,
kernel_size, kernel_size,
activation='relu', name="conv_server")(merged) activation='relu', name="conv_server")(merged)
# remove temporal dimension by global max pooling # remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y) y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y) y = Dropout(dropout)(y)
y = dense_server = Dense(dense_dim, y = Dense(dense_dim,
activation="relu", activation="relu",
name="dense_server")(y) name="dense_server")(y)
out_server = Dense(1, activation="sigmoid", name="server")(y) out_server = Dense(1, activation="sigmoid", name="server")(y)

View File

@ -1,103 +0,0 @@
from collections import namedtuple
import keras
from keras.activations import elu
from keras.engine import Input, Model as KerasModel
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, GlobalMaxPooling1D, MaxPool1D, \
TimeDistributed
import dataset
def selu(x):
"""Scaled Exponential Linear Unit. (Klambauer et al., 2017)
# Arguments
x: A tensor or variable to compute the activation function for.
# References
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
# copied from keras.io
"""
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
return scale * elu(x, alpha)
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5):
x = y = Input(shape=(input_length,))
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
y = Conv1D(filter_size, kernel_size=5, activation=selu)(y)
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
y = GlobalAveragePooling1D()(y)
y = Dense(hidden_dims, activation=selu)(y)
return KerasModel(x, y)
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both"):
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
# CNN processing a small slides of flow windows
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same",
input_shape=(window_size, domain_features + flow_features))(merged)
y = MaxPool1D(pool_size=3, strides=1)(y)
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same")(y)
y = MaxPool1D(pool_size=3, strides=1)(y)
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation=selu, padding="same")(y)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
y = Dense(dense_dim, activation=selu)(y)
y = Dense(dense_dim, activation=selu)(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
out_server = Dense(1, activation='sigmoid', name="server")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both"):
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Dense(dense_dim, activation=selu)(merged)
y = Dense(dense_dim,
activation="relu",
name="dense_server")(y)
out_server = Dense(1, activation="sigmoid", name="server")(y)
merged = keras.layers.concatenate([merged, y], -1)
# CNN processing a small slides of flow windows
y = Conv1D(filters=cnn_dims,
kernel_size=kernel_size,
activation=selu,
padding="same",
input_shape=(window_size, domain_features + flow_features))(merged)
y = MaxPool1D(pool_size=3,
strides=1)(y)
y = Conv1D(filters=cnn_dims,
kernel_size=kernel_size,
activation=selu,
padding="same")(y)
y = MaxPool1D(pool_size=3,
strides=1)(y)
y = Conv1D(filters=cnn_dims,
kernel_size=kernel_size,
activation=selu,
padding="same")(y)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim, activation=selu)(y)
y = Dense(dense_dim,
activation=selu,
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)