refactor training - separate staggered training; make differences as small as possible

This commit is contained in:
2017-09-12 08:36:23 +02:00
parent 6ce8fb464f
commit 7f49021a63
2 changed files with 50 additions and 69 deletions

View File

@@ -3,7 +3,6 @@ from collections import namedtuple
import keras
from keras.engine import Input, Model as KerasModel
from keras.layers import Activation, Conv1D, Dense, Dropout, Embedding, GlobalMaxPooling1D, TimeDistributed
from keras.regularizers import l2
import dataset
@@ -58,7 +57,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
y = Dense(dense_dim, kernel_regularizer=l2(0.1), activation='relu')(y)
y = Dense(dense_dim, activation='relu')(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
out_server = Dense(1, activation='sigmoid', name="server")(y)