WIP
This commit is contained in:
parent
bbd63fd1da
commit
7ae68cc30e
83
dataset.py
83
dataset.py
@ -6,12 +6,6 @@ import pandas as pd
|
|||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
# config = tf.ConfigProto(log_device_placement=True)
|
|
||||||
# config.gpu_options.per_process_gpu_memory_fraction = 0.5
|
|
||||||
# config.gpu_options.allow_growth = True
|
|
||||||
# session = tf.Session(config=config)
|
|
||||||
|
|
||||||
|
|
||||||
def get_character_dict():
|
def get_character_dict():
|
||||||
return dict((char, idx) for (idx, char) in
|
return dict((char, idx) for (idx, char) in
|
||||||
enumerate(string.ascii_lowercase + string.punctuation))
|
enumerate(string.ascii_lowercase + string.punctuation))
|
||||||
@ -60,23 +54,21 @@ def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
|||||||
return (outDomainLists, outDFFrames)
|
return (outDomainLists, outDFFrames)
|
||||||
|
|
||||||
|
|
||||||
def getFeatureVecForDomain(domain, characterDict, maxLen=40):
|
def get_domain_features(domain, vocab, max_length=40):
|
||||||
curFeature = np.zeros([maxLen, ])
|
curFeature = np.zeros([max_length, ])
|
||||||
for j in range(np.min([len(domain), maxLen])):
|
for j in range(np.min([len(domain), max_length])):
|
||||||
# print(j)
|
|
||||||
curCharacter = domain[-j]
|
curCharacter = domain[-j]
|
||||||
if curCharacter in characterDict:
|
if curCharacter in vocab:
|
||||||
curFeature[j] = characterDict[curCharacter]
|
curFeature[j] = vocab[curCharacter]
|
||||||
return curFeature
|
return curFeature
|
||||||
|
|
||||||
|
|
||||||
def getFlowFeatures(curDataLine):
|
def get_flow_features(flow):
|
||||||
useKeys = ['duration', 'bytes_down', 'bytes_up']
|
useKeys = ['duration', 'bytes_down', 'bytes_up']
|
||||||
curFeature = np.zeros([len(useKeys), ])
|
curFeature = np.zeros([len(useKeys), ])
|
||||||
for i in range(len(useKeys)):
|
for i, curKey in enumerate(useKeys):
|
||||||
curKey = useKeys[i]
|
|
||||||
try:
|
try:
|
||||||
curFeature[i] = np.log1p(curDataLine[curKey]).astype(float)
|
curFeature[i] = np.log1p(flow[curKey]).astype(float)
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
return curFeature
|
return curFeature
|
||||||
@ -93,13 +85,13 @@ def getCiscoFeatures(curDataLine, urlSIPDict):
|
|||||||
return np.zeros([numCiscoFeatures, ]).ravel()
|
return np.zeros([numCiscoFeatures, ]).ravel()
|
||||||
|
|
||||||
|
|
||||||
def create_dataset_from_flows(user_flow_df, char_dict, maxLen, threshold=3, windowSize=10):
|
def create_dataset_from_flows(user_flow_df, char_dict, maxLen, threshold=3, windowSize=10, use_cisco_features=False):
|
||||||
domainLists = []
|
domainLists = []
|
||||||
dfLists = []
|
dfLists = []
|
||||||
print("get chunks from user data frames")
|
print("get chunks from user data frames")
|
||||||
for i, user_flow in enumerate(get_flow_per_user(user_flow_df)):
|
for i, user_flow in enumerate(get_flow_per_user(user_flow_df)):
|
||||||
(domainListsTmp, dfListsTmp) = get_user_chunks(user_flow, windowSize=windowSize,
|
(domainListsTmp, dfListsTmp) = get_user_chunks(user_flow, windowSize=windowSize,
|
||||||
overlapping=False, maxLengthInSeconds=-1)
|
overlapping=True, maxLengthInSeconds=-1)
|
||||||
domainLists += domainListsTmp
|
domainLists += domainListsTmp
|
||||||
dfLists += dfListsTmp
|
dfLists += dfListsTmp
|
||||||
if i >= 10:
|
if i >= 10:
|
||||||
@ -107,68 +99,63 @@ def create_dataset_from_flows(user_flow_df, char_dict, maxLen, threshold=3, wind
|
|||||||
|
|
||||||
print("create training dataset")
|
print("create training dataset")
|
||||||
return create_dataset_from_lists(
|
return create_dataset_from_lists(
|
||||||
domainLists=domainLists, dfLists=dfLists, charachterDict=char_dict,
|
domains=domainLists, dfs=dfLists, charachterDict=char_dict,
|
||||||
maxLen=maxLen, threshold=threshold,
|
maxLen=maxLen, threshold=threshold,
|
||||||
flagUseCiscoFeatures=False, urlSIPDIct=dict(),
|
use_cisco_features=use_cisco_features, urlSIPDIct=dict(),
|
||||||
windowSize=windowSize)
|
windowSize=windowSize)
|
||||||
|
|
||||||
|
|
||||||
def create_dataset_from_lists(domainLists, dfLists, charachterDict, maxLen, threshold=3,
|
def create_dataset_from_lists(domains, dfs, charachterDict, maxLen, threshold=3,
|
||||||
flagUseCiscoFeatures=False, urlSIPDIct=dict(),
|
use_cisco_features=False, urlSIPDIct=dict(),
|
||||||
windowSize=10):
|
windowSize=10):
|
||||||
if 'hits' in dfLists[0].keys():
|
if 'hits' in dfs[0].keys():
|
||||||
hitName = 'hits'
|
hitName = 'hits'
|
||||||
elif 'virusTotalHits' in dfLists[0].keys():
|
elif 'virusTotalHits' in dfs[0].keys():
|
||||||
hitName = 'virusTotalHits'
|
hitName = 'virusTotalHits'
|
||||||
numFlowFeatures = 3
|
numFlowFeatures = 3
|
||||||
numCiscoFeatures = 30
|
numCiscoFeatures = 30
|
||||||
numFeatures = numFlowFeatures
|
numFeatures = numFlowFeatures
|
||||||
if flagUseCiscoFeatures:
|
if use_cisco_features:
|
||||||
numFeatures += numCiscoFeatures
|
numFeatures += numCiscoFeatures
|
||||||
outputFeatures = []
|
outputFeatures = []
|
||||||
label = []
|
label = []
|
||||||
hits = []
|
hits = []
|
||||||
trainNames = []
|
trainNames = []
|
||||||
for i in range(windowSize):
|
for i in range(windowSize):
|
||||||
outputFeatures.append(np.zeros([len(domainLists), maxLen]))
|
outputFeatures.append(np.zeros([len(domains), maxLen]))
|
||||||
outputFeatures.append(np.zeros([len(domainLists), numFeatures]))
|
outputFeatures.append(np.zeros([len(domains), numFeatures]))
|
||||||
|
|
||||||
for i in tqdm(np.arange(len(domainLists)), miniters=10):
|
for i in tqdm(np.arange(len(domains)), miniters=10):
|
||||||
curCounter = 0
|
curCounter = 0
|
||||||
# print('len domainList: ' + str(len(domainLists[i])))
|
# print('len domainList: ' + str(len(domainLists[i])))
|
||||||
# print('len df: ' + str(len(dfLists[i])))
|
# print('len df: ' + str(len(dfLists[i])))
|
||||||
for j in range(np.min([windowSize, len(domainLists[i])])):
|
for j in range(np.min([windowSize, len(domains[i])])):
|
||||||
outputFeatures[curCounter][i, :] = getFeatureVecForDomain(domainLists[i][j], charachterDict, maxLen)
|
outputFeatures[curCounter][i, :] = get_domain_features(domains[i][j], charachterDict, maxLen)
|
||||||
curCounter += 1
|
curCounter += 1
|
||||||
if flagUseCiscoFeatures:
|
if use_cisco_features:
|
||||||
outputFeatures[curCounter][i, 0:numFlowFeatures] = getFlowFeatures(dfLists[i].iloc[j])
|
outputFeatures[curCounter][i, 0:numFlowFeatures] = get_flow_features(dfs[i].iloc[j])
|
||||||
outputFeatures[curCounter][i, numFlowFeatures:] = getCiscoFeatures(dfLists[i].iloc[j], urlSIPDIct)
|
outputFeatures[curCounter][i, numFlowFeatures:] = get_cisco_features(dfs[i].iloc[j], urlSIPDIct)
|
||||||
else:
|
else:
|
||||||
outputFeatures[curCounter][i, :] = getFlowFeatures(dfLists[i].iloc[j])
|
outputFeatures[curCounter][i, :] = get_flow_features(dfs[i].iloc[j])
|
||||||
curCounter += 1
|
curCounter += 1
|
||||||
curLabel = 0.0
|
curLabel = 0.0
|
||||||
if np.max(dfLists[i][hitName]) >= threshold:
|
if np.max(dfs[i][hitName]) >= threshold:
|
||||||
curLabel = 1.0
|
curLabel = 1.0
|
||||||
elif np.max(dfLists[i][hitName]) == -1:
|
elif np.max(dfs[i][hitName]) == -1:
|
||||||
curLabel = -1.0
|
curLabel = -1.0
|
||||||
elif np.max(dfLists[i][hitName]) > 0 and np.max(dfLists[i][hitName]) < threshold:
|
elif np.max(dfs[i][hitName]) > 0 and np.max(dfs[i][hitName]) < threshold:
|
||||||
curLabel = -2.0
|
curLabel = -2.0
|
||||||
label.append(curLabel)
|
label.append(curLabel)
|
||||||
hits.append(np.max(dfLists[i][hitName]))
|
hits.append(np.max(dfs[i][hitName]))
|
||||||
trainNames.append(np.unique(dfLists[i]['user_hash']))
|
trainNames.append(np.unique(dfs[i]['user_hash']))
|
||||||
return (outputFeatures, np.array(label), np.array(hits), np.array(trainNames))
|
return (outputFeatures, np.array(label), np.array(hits), np.array(trainNames))
|
||||||
|
|
||||||
|
|
||||||
def get_user_flow_data():
|
def get_user_flow_data():
|
||||||
# load train and test data from joblib
|
df = pd.read_csv("data/rk_data.csv.gz")
|
||||||
# created with createTrainDataMultipleTaskLearning.py
|
df.drop("Unnamed: 0", 1, inplace=True)
|
||||||
# rk: changed to csv file
|
df.set_index(keys=['user_hash'], drop=False, inplace=True)
|
||||||
trainDFs = pd.read_csv("data/rk_data.csv.gz")
|
return df
|
||||||
trainDFs.drop("Unnamed: 0", 1, inplace=True)
|
|
||||||
trainDFs.set_index(keys=['user_hash'], drop=False, inplace=True)
|
|
||||||
users = trainDFs['user_hash'].unique().tolist()
|
|
||||||
u0 = trainDFs.loc[trainDFs.user_hash == users[0]]
|
|
||||||
return trainDFs
|
|
||||||
|
|
||||||
|
|
||||||
def get_flow_per_user(df):
|
def get_flow_per_user(df):
|
||||||
|
6
main.py
6
main.py
@ -5,6 +5,12 @@ import dataset
|
|||||||
import models
|
import models
|
||||||
|
|
||||||
|
|
||||||
|
# config = tf.ConfigProto(log_device_placement=True)
|
||||||
|
# config.gpu_options.per_process_gpu_memory_fraction = 0.5
|
||||||
|
# config.gpu_options.allow_growth = True
|
||||||
|
# session = tf.Session(config=config)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# parameter
|
# parameter
|
||||||
innerCNNFilters = 512
|
innerCNNFilters = 512
|
||||||
|
Loading…
Reference in New Issue
Block a user