add tsne (does not work with big data)
fix model loading with custom selu function
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
import keras.backend as K
|
||||
|
||||
from models.renes_networks import selu
|
||||
from . import flat_2, pauls_networks, renes_networks
|
||||
|
||||
|
||||
@@ -24,11 +25,11 @@ def get_models_by_params(params: dict):
|
||||
dense_dim = params.get("dense_main")
|
||||
model_output = params.get("model_output", "both")
|
||||
# create models
|
||||
if network_depth == "small":
|
||||
if network_depth == "flat1":
|
||||
networks = pauls_networks
|
||||
elif network_depth == "flat":
|
||||
elif network_depth == "flat2":
|
||||
networks = flat_2
|
||||
elif network_depth == "medium":
|
||||
elif network_depth == "deep1":
|
||||
networks = renes_networks
|
||||
else:
|
||||
raise Exception("network not found")
|
||||
@@ -49,6 +50,7 @@ def get_metrics():
|
||||
("precision", precision),
|
||||
("recall", recall),
|
||||
("f1_score", f1_score),
|
||||
("selu", selu)
|
||||
])
|
||||
|
||||
|
||||
|
@@ -32,7 +32,7 @@ def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden
|
||||
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
|
||||
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
|
||||
y = GlobalAveragePooling1D()(y)
|
||||
y = Dense(hidden_dims, activation="relu")(y)
|
||||
y = Dense(hidden_dims, activation=selu)(y)
|
||||
return KerasModel(x, y)
|
||||
|
||||
|
||||
@@ -53,7 +53,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation=selu)(y)
|
||||
y = Dense(dense_dim // 2, activation=selu)(y)
|
||||
y = Dense(dense_dim, activation=selu)(y)
|
||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
||||
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
||||
|
||||
@@ -67,6 +67,9 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
y = Dense(dense_dim, activation=selu)(merged)
|
||||
y = Dense(dense_dim,
|
||||
activation="relu",
|
||||
name="dense_server")(y)
|
||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
||||
merged = keras.layers.concatenate([merged, y], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
@@ -90,6 +93,7 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(dropout)(y)
|
||||
y = Dense(dense_dim, activation=selu)(y)
|
||||
y = Dense(dense_dim,
|
||||
activation=selu,
|
||||
name="dense_client")(y)
|
||||
|
Reference in New Issue
Block a user