add tsne (does not work with big data)

fix model loading with custom selu function
This commit is contained in:
2017-09-22 10:01:12 +02:00
parent e2bf2dc90f
commit 607d74998c
4 changed files with 33 additions and 11 deletions

View File

@@ -1,5 +1,6 @@
import keras.backend as K
from models.renes_networks import selu
from . import flat_2, pauls_networks, renes_networks
@@ -24,11 +25,11 @@ def get_models_by_params(params: dict):
dense_dim = params.get("dense_main")
model_output = params.get("model_output", "both")
# create models
if network_depth == "small":
if network_depth == "flat1":
networks = pauls_networks
elif network_depth == "flat":
elif network_depth == "flat2":
networks = flat_2
elif network_depth == "medium":
elif network_depth == "deep1":
networks = renes_networks
else:
raise Exception("network not found")
@@ -49,6 +50,7 @@ def get_metrics():
("precision", precision),
("recall", recall),
("f1_score", f1_score),
("selu", selu)
])

View File

@@ -32,7 +32,7 @@ def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
y = Conv1D(filter_size, kernel_size=3, activation=selu)(y)
y = GlobalAveragePooling1D()(y)
y = Dense(hidden_dims, activation="relu")(y)
y = Dense(hidden_dims, activation=selu)(y)
return KerasModel(x, y)
@@ -53,7 +53,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
y = Dense(dense_dim, activation=selu)(y)
y = Dense(dense_dim // 2, activation=selu)(y)
y = Dense(dense_dim, activation=selu)(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
out_server = Dense(1, activation='sigmoid', name="server")(y)
@@ -67,6 +67,9 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Dense(dense_dim, activation=selu)(merged)
y = Dense(dense_dim,
activation="relu",
name="dense_server")(y)
out_server = Dense(1, activation="sigmoid", name="server")(y)
merged = keras.layers.concatenate([merged, y], -1)
# CNN processing a small slides of flow windows
@@ -90,6 +93,7 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim, activation=selu)(y)
y = Dense(dense_dim,
activation=selu,
name="dense_client")(y)