added some argparse arguments to main
This commit is contained in:
parent
c972963a19
commit
5f8a760a0c
67
main.py
67
main.py
@ -1,9 +1,63 @@
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
from keras.utils import np_utils
|
||||
|
||||
import dataset
|
||||
import models
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--modes", action="store", dest="modes", nargs="+")
|
||||
|
||||
# parser.add_argument("--data", action="store", dest="data",
|
||||
# default="data/")
|
||||
#
|
||||
# parser.add_argument("--h5data", action="store", dest="h5data",
|
||||
# default="")
|
||||
#
|
||||
# parser.add_argument("--model", action="store", dest="model",
|
||||
# default="model_x")
|
||||
#
|
||||
# parser.add_argument("--pred", action="store", dest="pred",
|
||||
# default="")
|
||||
#
|
||||
# parser.add_argument("--type", action="store", dest="model_type",
|
||||
# default="simple_conv")
|
||||
#
|
||||
parser.add_argument("--batch", action="store", dest="batch_size",
|
||||
default=64, type=int)
|
||||
|
||||
parser.add_argument("--epochs", action="store", dest="epochs",
|
||||
default=10, type=int)
|
||||
|
||||
# parser.add_argument("--samples", action="store", dest="samples",
|
||||
# default=100000, type=int)
|
||||
#
|
||||
# parser.add_argument("--samples_val", action="store", dest="samples_val",
|
||||
# default=10000, type=int)
|
||||
#
|
||||
# parser.add_argument("--area", action="store", dest="area_size",
|
||||
# default=25, type=int)
|
||||
#
|
||||
# parser.add_argument("--queue", action="store", dest="queue_size",
|
||||
# default=50, type=int)
|
||||
#
|
||||
# parser.add_argument("--p", action="store", dest="p_train",
|
||||
# default=0.5, type=float)
|
||||
#
|
||||
# parser.add_argument("--p_val", action="store", dest="p_val",
|
||||
# default=0.01, type=float)
|
||||
#
|
||||
# parser.add_argument("--gpu", action="store", dest="gpu",
|
||||
# default=0, type=int)
|
||||
#
|
||||
# parser.add_argument("--tmp", action="store_true", dest="tmp")
|
||||
#
|
||||
# parser.add_argument("--test", action="store", dest="test_image",
|
||||
# default=6, choices=range(7), type=int)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# config = tf.ConfigProto(log_device_placement=True)
|
||||
# config.gpu_options.per_process_gpu_memory_fraction = 0.5
|
||||
@ -31,7 +85,6 @@ def main():
|
||||
threshold = 3
|
||||
minFlowsPerUser = 10
|
||||
numEpochs = 100
|
||||
timesNeg = -1
|
||||
|
||||
char_dict = dataset.get_character_dict()
|
||||
user_flow_df = dataset.get_user_flow_data()
|
||||
@ -39,7 +92,7 @@ def main():
|
||||
print("create training dataset")
|
||||
(X_tr, hits_tr, names_tr, server_tr, trusted_hits_tr) = dataset.create_dataset_from_flows(
|
||||
user_flow_df, char_dict,
|
||||
maxLen=maxLen, windowSize=windowSize)
|
||||
max_len=maxLen, window_size=windowSize)
|
||||
# make client labels discrete with 4 different values
|
||||
# TODO: use trusted_hits_tr for client classification too
|
||||
client_labels = np.apply_along_axis(lambda x: dataset.discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
|
||||
@ -65,12 +118,14 @@ def main():
|
||||
loss='binary_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
epochNumber = 0
|
||||
client_labels = np_utils.to_categorical(client_labels, 2)
|
||||
server_labels = np_utils.to_categorical(server_labels, 2)
|
||||
model.fit(X_tr, [client_labels, server_labels], batch_size=128,
|
||||
epochs=epochNumber + 1, shuffle=True, initial_epoch=epochNumber) # ,
|
||||
# validation_data=(testData,testLabel))
|
||||
model.fit(X_tr,
|
||||
[client_labels, server_labels],
|
||||
batch_size=args.batch_size,
|
||||
epochs=args.epochs,
|
||||
shuffle=True)
|
||||
# TODO: for validation we use future data -> validation_data=(testData,testLabel))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -45,8 +45,8 @@ def get_top_cnn(cnn, numFeatures, maxLen, windowSize, domainFeatures, filters, k
|
||||
maxPool = GlobalMaxPooling1D()(cnn)
|
||||
cnnDropout = Dropout(cnnDropout)(maxPool)
|
||||
cnnDense = Dense(cnnHiddenDims, activation='relu')(cnnDropout)
|
||||
cnnOutput1 = Dense(2, activation='softmax')(cnnDense)
|
||||
cnnOutput2 = Dense(2, activation='softmax')(cnnDense)
|
||||
cnnOutput1 = Dense(2, activation='softmax', name="client")(cnnDense)
|
||||
cnnOutput2 = Dense(2, activation='softmax', name="server")(cnnDense)
|
||||
|
||||
# We define a trainable model linking the
|
||||
# tweet inputs to the predictions
|
||||
|
Loading…
Reference in New Issue
Block a user