refactor network to use new input format
This commit is contained in:
parent
5743127b7f
commit
59c1176e85
44
models.py
44
models.py
@ -1,12 +1,12 @@
|
||||
import keras
|
||||
from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, Reshape
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
|
||||
|
||||
|
||||
def get_shared_cnn(vocabSize, embeddingSize, input_length, filters, kernel_size,
|
||||
def get_shared_cnn(vocab_size, embedding_size, input_length, filters, kernel_size,
|
||||
hidden_dims, drop_out):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocabSize, output_dim=embeddingSize)(y)
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
@ -21,33 +21,21 @@ def get_full_model(vocabSize, embeddingSize, maxLen, domainFeatures, flowFeature
|
||||
|
||||
|
||||
def get_top_cnn(cnn, numFeatures, maxLen, windowSize, domainFeatures, filters, kernel_size, cnnHiddenDims, cnnDropout):
|
||||
inputList = []
|
||||
encodedList = []
|
||||
# TODO: ???
|
||||
for i in range(windowSize):
|
||||
inputList.append(Input(shape=(maxLen,)))
|
||||
encodedList.append(cnn(inputList[-1])) # add shared domain model
|
||||
inputList.append(Input(shape=(numFeatures,)))
|
||||
# TODO: ???
|
||||
merge_layer_input = []
|
||||
for i in range(windowSize):
|
||||
merge_layer_input.append(encodedList[i])
|
||||
merge_layer_input.append(inputList[(2 * i) + 1])
|
||||
# We can then concatenate the two vectors:
|
||||
merged_vector = keras.layers.concatenate(merge_layer_input, axis=-1)
|
||||
reshape = Reshape((windowSize, domainFeatures + numFeatures))(merged_vector)
|
||||
ipt_domains = Input(shape=(windowSize, maxLen), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
ipt_flows = Input(shape=(windowSize, numFeatures), name="ipt_flows")
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# add second cnn
|
||||
cnn = Conv1D(filters,
|
||||
y = Conv1D(filters,
|
||||
kernel_size,
|
||||
activation='relu',
|
||||
input_shape=(windowSize, domainFeatures + numFeatures))(reshape)
|
||||
input_shape=(windowSize, domainFeatures + numFeatures))(merged)
|
||||
# TODO: why global pooling? -> 3D to 2D
|
||||
# we use max pooling:
|
||||
maxPool = GlobalMaxPooling1D()(cnn)
|
||||
cnnDropout = Dropout(cnnDropout)(maxPool)
|
||||
cnnDense = Dense(cnnHiddenDims, activation='relu')(cnnDropout)
|
||||
cnnOutput1 = Dense(2, activation='softmax', name="client")(cnnDense)
|
||||
cnnOutput2 = Dense(2, activation='softmax', name="server")(cnnDense)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(cnnHiddenDims, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
|
||||
# We define a trainable model linking the
|
||||
# tweet inputs to the predictions
|
||||
return Model(inputs=inputList, outputs=(cnnOutput1, cnnOutput2))
|
||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
||||
|
Loading…
Reference in New Issue
Block a user