add h5 support for pauls best config main

This commit is contained in:
René Knaebel 2017-07-11 11:12:03 +02:00
parent 41b38de1ab
commit 522854ee0d
3 changed files with 21 additions and 16 deletions

View File

@ -96,7 +96,7 @@ def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10,
domains = [] domains = []
features = [] features = []
print("get chunks from user data frames") print("get chunks from user data frames")
for i, user_flow in tqdm(list(enumerate(get_flow_per_user(user_flow_df)))): for i, user_flow in tqdm(list(enumerate(get_flow_per_user(user_flow_df)))[:50]):
(domain_windows, feature_windows) = get_user_chunks(user_flow, (domain_windows, feature_windows) = get_user_chunks(user_flow,
windowSize=window_size, windowSize=window_size,
overlapping=False, overlapping=False,

30
main.py
View File

@ -2,7 +2,6 @@ import argparse
import os import os
from keras.models import load_model from keras.models import load_model
from keras.utils import np_utils
import dataset import dataset
import hyperband import hyperband
@ -94,19 +93,24 @@ def exists_or_make_path(p):
def main_paul_best(): def main_paul_best():
char_dict = dataset.get_character_dict() char_dict = dataset.get_character_dict()
user_flow_df = dataset.get_user_flow_data(args.train_data) print("check for h5data")
try:
open(args.h5data, "r")
raise FileNotFoundError()
except FileNotFoundError:
print("h5 data not found - load csv file")
user_flow_df = dataset.get_user_flow_data(args.train_data)
print("create training dataset")
domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(
user_flow_df, char_dict,
max_len=args.domain_length, window_size=args.window)
print("store training dataset as h5 file")
dataset.store_h5dataset(args.h5data, domain_tr, flow_tr, client_tr, server_tr)
print("load h5 dataset")
domain_tr, flow_tr, client_tr, server_tr = dataset.load_h5dataset(args.h5data)
param = models.pauls_networks.best_config param = models.pauls_networks.best_config
param["vocab_size"] = len(char_dict) + 1 param["vocab_size"] = len(char_dict) + 1
print(param)
print("create training dataset")
domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(
user_flow_df, char_dict,
max_len=args.domain_length,
window_size=args.window)
client_tr = np_utils.to_categorical(client_tr, 2)
server_tr = np_utils.to_categorical(server_tr, 2)
embedding, model = models.get_models_by_params(param) embedding, model = models.get_models_by_params(param)
@ -163,12 +167,14 @@ def main_hyperband():
def main_train(): def main_train():
exists_or_make_path(args.clf_model) # exists_or_make_path(args.clf_model)
char_dict = dataset.get_character_dict() char_dict = dataset.get_character_dict()
print("check for h5data") print("check for h5data")
try: try:
open(args.h5data, "r") open(args.h5data, "r")
raise FileNotFoundError()
except FileNotFoundError: except FileNotFoundError:
print("h5 data not found - load csv file")
user_flow_df = dataset.get_user_flow_data(args.train_data) user_flow_df = dataset.get_user_flow_data(args.train_data)
print("create training dataset") print("create training dataset")
domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows( domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(

View File

@ -10,9 +10,8 @@ df.reset_index(inplace=True)
df.dropna(axis=0, how="any", inplace=True) df.dropna(axis=0, how="any", inplace=True)
df[["duration", "bytes_down", "bytes_up"]] = df[["duration", "bytes_down", "bytes_up"]].astype(np.int) df[["duration", "bytes_down", "bytes_up"]] = df[["duration", "bytes_down", "bytes_up"]].astype(np.int)
df[["domain", "server_ip"]] = df[["domain", "server_ip"]].astype(str) df[["domain", "server_ip"]] = df[["domain", "server_ip"]].astype(str)
df[["server_label"]] = df[["server_label"]].astype(np.bool)
df.serverLabel = df.serverLabel.astype(np.bool) df.serverLabel = df.serverLabel.astype(np.bool)
df.virusTotalHits = df.virusTotalHits.astype(np.int) df.virusTotalHits = df.virusTotalHits.astype(np.int8)
df.trustedHits = df.trustedHits.astype(np.int) df.trustedHits = df.trustedHits.astype(np.int8)
df.to_csv("/tmp/rk/full_future_dataset.csv.gz", compression="gzip") df.to_csv("/tmp/rk/full_future_dataset.csv.gz", compression="gzip")