add regularization to small networks, fix model name in args, fix visualizations
This commit is contained in:
@@ -1,11 +1,12 @@
|
||||
from collections import namedtuple
|
||||
|
||||
import keras
|
||||
from keras.engine import Input, Model as KerasModel
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
|
||||
from keras.layers import Activation, Conv1D, Dense, Dropout, Embedding, GlobalMaxPooling1D, TimeDistributed
|
||||
from keras.regularizers import l2
|
||||
|
||||
import dataset
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
||||
|
||||
best_config = {
|
||||
@@ -33,10 +34,14 @@ best_config = {
|
||||
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5) -> KerasModel:
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
||||
y = Conv1D(filter_size, kernel_size, activation='relu')(y)
|
||||
y = Conv1D(filter_size,
|
||||
kernel_size,
|
||||
kernel_regularizer=l2(0.01),
|
||||
activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
y = Dense(hidden_dims,
|
||||
kernel_regularizer=l2(0.01))(y)
|
||||
y = Activation('relu')(y)
|
||||
return KerasModel(x, y)
|
||||
|
||||
@@ -50,12 +55,13 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
# CNN processing a small slides of flow windows
|
||||
y = Conv1D(cnn_dims,
|
||||
kernel_size,
|
||||
kernel_regularizer=l2(0.01),
|
||||
activation='relu',
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y = Dense(dense_dim, kernel_regularizer=l2(0.01), activation='relu')(y)
|
||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
||||
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
||||
|
||||
@@ -68,18 +74,25 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
y = Dense(dense_dim, activation="relu", name="dense_server")(merged)
|
||||
y = Dense(dense_dim,
|
||||
kernel_regularizer=l2(0.01),
|
||||
activation="relu",
|
||||
name="dense_server")(merged)
|
||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
||||
merged = keras.layers.concatenate([merged, y], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
y = Conv1D(cnn_dims,
|
||||
kernel_size,
|
||||
kernel_regularizer=l2(0.01),
|
||||
activation='relu',
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(dropout)(y)
|
||||
y = Dense(dense_dim, activation='relu', name="dense_client")(y)
|
||||
y = Dense(dense_dim,
|
||||
kernel_regularizer=l2(0.01),
|
||||
activation='relu',
|
||||
name="dense_client")(y)
|
||||
|
||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
||||
|
||||
|
Reference in New Issue
Block a user