ma_cisco_malware/models/networks.py

250 lines
9.3 KiB
Python
Raw Normal View History

from collections import namedtuple
import keras
import keras.backend as K
2017-11-30 09:34:45 +01:00
import numpy as np
from keras.engine import Input, Model as KerasModel
from keras.engine.topology import Layer
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, GlobalMaxPooling1D, TimeDistributed
2017-11-30 09:34:45 +01:00
from keras.regularizers import Regularizer
import dataset
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
2017-11-07 20:32:08 +01:00
def get_domain_embedding_model(embedding_size, input_length, filter_size, kernel_size, hidden_dims,
drop_out=0.5) -> KerasModel:
x = y = Input(shape=(input_length,))
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
y = Conv1D(filter_size,
kernel_size,
activation='relu')(y)
y = GlobalMaxPooling1D()(y)
y = Dropout(drop_out)(y)
y = Dense(hidden_dims, activation="relu")(y)
return KerasModel(x, y)
def get_domain_embedding_model2(embedding_size, input_length, filter_size, kernel_size, hidden_dims,
drop_out=0.5) -> KerasModel:
x = y = Input(shape=(input_length,))
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
y = Conv1D(filter_size,
kernel_size,
activation='relu')(y)
y = Conv1D(filter_size,
kernel_size,
activation='relu')(y)
y = Conv1D(filter_size,
kernel_size,
activation='relu')(y)
y = GlobalAveragePooling1D()(y)
y = Dense(hidden_dims, activation="relu")(y)
return KerasModel(x, y)
2017-11-07 20:32:08 +01:00
def get_final_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
2017-09-10 23:40:14 +02:00
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
activation='relu')(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
y = Dense(dense_dim, activation='relu')(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
out_server = Dense(1, activation='sigmoid', name="server")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)
2017-11-07 20:32:08 +01:00
def get_inter_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
2017-09-10 23:40:14 +02:00
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Dense(dense_dim,
activation="relu",
name="dense_server")(merged)
out_server = Dense(1, activation="sigmoid", name="server")(y)
2017-11-30 09:34:45 +01:00
merged = keras.layers.concatenate([merged,
y], -1)
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
activation='relu')(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim,
activation='relu',
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)
2017-10-05 15:26:53 +02:00
def get_server_model(flow_features, domain_length, dense_dim, cnn):
ipt_domains = Input(shape=(domain_length,), name="ipt_domains")
ipt_flows = Input(shape=(flow_features,), name="ipt_flows")
encoded = cnn(ipt_domains)
cnn.name = "domain_cnn"
2017-10-05 15:26:53 +02:00
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Dense(dense_dim,
activation="relu",
name="dense_server")(merged)
out_server = Dense(1, activation="sigmoid", name="server")(y)
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
2017-11-05 22:52:50 +01:00
2017-11-07 20:32:08 +01:00
def get_long_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
2017-11-05 22:52:50 +01:00
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Conv1D(cnn_dims,
kernel_size,
2017-11-07 20:32:08 +01:00
activation='relu', name="conv_server")(merged)
2017-11-05 22:52:50 +01:00
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim,
activation="relu",
name="dense_server")(y)
out_server = Dense(1, activation="sigmoid", name="server")(y)
# CNN processing a small slides of flow windows
2017-11-06 21:51:49 +01:00
y = Conv1D(cnn_dims,
kernel_size,
activation='relu', name="conv_client")(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim,
activation='relu',
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server)
class CrossStitch2(Layer):
def __init__(self, **kwargs):
super(CrossStitch2, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.s = self.add_weight(name='cross-stitch-s',
shape=(1,),
initializer='uniform',
trainable=True)
self.d = self.add_weight(name='cross-stitch-d',
shape=(1,),
initializer='uniform',
trainable=True)
super(CrossStitch2, self).build(input_shape)
def call(self, xs):
x1, x2 = xs
out = x1 * self.s + x2 * self.d
return out
def compute_output_shape(self, input_shape):
return input_shape[0]
class CrossStitchMix2(Layer):
def __init__(self, **kwargs):
super(CrossStitchMix2, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.s = self.add_weight(name='cross-stitch-s',
shape=(1,),
initializer='uniform',
trainable=True)
self.d = self.add_weight(name='cross-stitch-d',
shape=(1,),
initializer='uniform',
trainable=True)
super(CrossStitchMix2, self).build(input_shape)
def call(self, xs):
x1, x2 = xs
2017-11-30 09:34:45 +01:00
out = K.concatenate((x1 * self.s, x2 * self.d), axis=-1)
return out
def compute_output_shape(self, input_shape):
return (input_shape[0][0], input_shape[0][1] + input_shape[1][1])
2017-11-30 09:34:45 +01:00
class L21(Regularizer):
"""Regularizer for L21 regularization.
Found at: https://bitbucket.org/ispamm/group-lasso-for-neural-networks-tensorflow-keras
# Arguments
C: Float; L21 regularization factor.
"""
def __init__(self, C=0.):
self.C = K.cast_to_floatx(C)
def __call__(self, x):
const_coeff = np.sqrt(K.int_shape(x)[1])
return self.C * const_coeff * K.sum(K.sqrt(K.sum(K.square(x), axis=1)))
def get_config(self):
return {'C': float(self.C)}
def get_sluice_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y1 = Conv1D(cnn_dims,
kernel_size,
activation='relu', name="conv_server")(merged)
y1 = GlobalMaxPooling1D()(y1)
y2 = Conv1D(cnn_dims,
kernel_size,
activation='relu', name="conv_client")(merged)
y2 = GlobalMaxPooling1D()(y2)
c11 = CrossStitch2()([y1, y2])
c12 = CrossStitch2()([y1, y2])
y1 = Dropout(dropout)(c11)
y1 = Dense(dense_dim,
activation="relu",
name="dense_server")(y1)
y2 = Dropout(dropout)(c12)
y2 = Dense(dense_dim,
activation='relu',
name="dense_client")(y2)
c21 = CrossStitch2()([y1, y2])
c22 = CrossStitch2()([y1, y2])
beta1 = CrossStitchMix2()([c11, c21])
beta2 = CrossStitchMix2()([c12, c22])
out_server = Dense(1, activation="sigmoid", name="server")(beta1)
out_client = Dense(1, activation='sigmoid', name="client")(beta2)
return Model(ipt_domains, ipt_flows, out_client, out_server)