2017-09-10 18:06:40 +02:00
|
|
|
from collections import namedtuple
|
|
|
|
|
2017-07-05 18:10:22 +02:00
|
|
|
import keras
|
2017-09-07 14:24:55 +02:00
|
|
|
from keras.engine import Input, Model as KerasModel
|
2017-10-19 17:37:29 +02:00
|
|
|
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalMaxPooling1D, TimeDistributed
|
2017-07-05 18:10:22 +02:00
|
|
|
|
2017-07-30 13:47:11 +02:00
|
|
|
import dataset
|
|
|
|
|
2017-09-07 14:24:55 +02:00
|
|
|
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
|
|
|
|
2017-11-07 20:32:08 +01:00
|
|
|
|
|
|
|
def get_domain_embedding_model(embedding_size, input_length, filter_size, kernel_size, hidden_dims,
|
|
|
|
drop_out=0.5) -> KerasModel:
|
2017-07-05 18:10:22 +02:00
|
|
|
x = y = Input(shape=(input_length,))
|
2017-07-30 13:47:11 +02:00
|
|
|
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
2017-09-10 18:06:40 +02:00
|
|
|
y = Conv1D(filter_size,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu')(y)
|
2017-07-05 18:10:22 +02:00
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(drop_out)(y)
|
2017-10-19 17:37:29 +02:00
|
|
|
y = Dense(hidden_dims, activation="relu")(y)
|
2017-09-07 14:24:55 +02:00
|
|
|
return KerasModel(x, y)
|
2017-07-05 18:10:22 +02:00
|
|
|
|
|
|
|
|
2017-11-07 20:32:08 +01:00
|
|
|
def get_final_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
|
|
dense_dim, cnn) -> Model:
|
2017-07-05 18:10:22 +02:00
|
|
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
2017-09-10 23:40:14 +02:00
|
|
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
2017-07-05 18:10:22 +02:00
|
|
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
|
|
# CNN processing a small slides of flow windows
|
|
|
|
y = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
2017-11-07 20:09:20 +01:00
|
|
|
activation='relu')(merged)
|
2017-07-05 18:10:22 +02:00
|
|
|
# remove temporal dimension by global max pooling
|
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(cnnDropout)(y)
|
2017-09-12 08:36:23 +02:00
|
|
|
y = Dense(dense_dim, activation='relu')(y)
|
2017-09-07 14:24:55 +02:00
|
|
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
|
|
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
2017-07-05 18:10:22 +02:00
|
|
|
|
2017-09-07 14:24:55 +02:00
|
|
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
2017-07-29 19:42:36 +02:00
|
|
|
|
|
|
|
|
2017-11-07 20:32:08 +01:00
|
|
|
def get_inter_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
|
|
dense_dim, cnn) -> Model:
|
2017-07-29 19:42:36 +02:00
|
|
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
|
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
2017-09-10 23:40:14 +02:00
|
|
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
2017-08-05 09:33:07 +02:00
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
2017-09-10 18:06:40 +02:00
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation="relu",
|
|
|
|
name="dense_server")(merged)
|
2017-09-07 14:24:55 +02:00
|
|
|
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
|
|
merged = keras.layers.concatenate([merged, y], -1)
|
2017-08-05 09:33:07 +02:00
|
|
|
# CNN processing a small slides of flow windows
|
2017-07-29 19:42:36 +02:00
|
|
|
y = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
2017-09-17 17:26:09 +02:00
|
|
|
activation='relu')(merged)
|
2017-07-29 19:42:36 +02:00
|
|
|
# remove temporal dimension by global max pooling
|
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(dropout)(y)
|
2017-09-10 18:06:40 +02:00
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation='relu',
|
|
|
|
name="dense_client")(y)
|
2017-07-29 19:42:36 +02:00
|
|
|
|
2017-09-07 14:24:55 +02:00
|
|
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
2017-07-29 19:42:36 +02:00
|
|
|
|
2017-09-07 14:24:55 +02:00
|
|
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
2017-10-05 15:26:53 +02:00
|
|
|
|
|
|
|
|
|
|
|
def get_server_model(flow_features, domain_length, dense_dim, cnn):
|
|
|
|
ipt_domains = Input(shape=(domain_length,), name="ipt_domains")
|
|
|
|
ipt_flows = Input(shape=(flow_features,), name="ipt_flows")
|
|
|
|
encoded = cnn(ipt_domains)
|
2017-10-09 14:19:01 +02:00
|
|
|
cnn.name = "domain_cnn"
|
|
|
|
|
2017-10-05 15:26:53 +02:00
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation="relu",
|
|
|
|
name="dense_server")(merged)
|
|
|
|
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
|
|
|
|
|
|
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
|
2017-11-05 22:52:50 +01:00
|
|
|
|
|
|
|
|
2017-11-07 20:32:08 +01:00
|
|
|
def get_long_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
2017-11-07 20:09:20 +01:00
|
|
|
dense_dim, cnn) -> Model:
|
2017-11-05 22:52:50 +01:00
|
|
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
|
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
|
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
|
|
y = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
2017-11-07 20:32:08 +01:00
|
|
|
activation='relu', name="conv_server")(merged)
|
2017-11-05 22:52:50 +01:00
|
|
|
# remove temporal dimension by global max pooling
|
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(dropout)(y)
|
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation="relu",
|
|
|
|
name="dense_server")(y)
|
|
|
|
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
|
|
# CNN processing a small slides of flow windows
|
2017-11-06 21:51:49 +01:00
|
|
|
y = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu', name="conv_client")(merged)
|
|
|
|
# remove temporal dimension by global max pooling
|
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(dropout)(y)
|
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation='relu',
|
|
|
|
name="dense_client")(y)
|
|
|
|
|
|
|
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
|
|
|
|
|
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|