2017-09-10 18:06:40 +02:00
|
|
|
from collections import namedtuple
|
|
|
|
|
2017-07-05 18:10:22 +02:00
|
|
|
import keras
|
2017-11-27 16:17:19 +01:00
|
|
|
import keras.backend as K
|
2017-11-30 09:34:45 +01:00
|
|
|
import numpy as np
|
2017-09-07 14:24:55 +02:00
|
|
|
from keras.engine import Input, Model as KerasModel
|
2017-11-27 16:17:19 +01:00
|
|
|
from keras.engine.topology import Layer
|
2017-11-10 12:52:18 +01:00
|
|
|
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, GlobalMaxPooling1D, TimeDistributed
|
2017-11-30 09:34:45 +01:00
|
|
|
from keras.regularizers import Regularizer
|
2017-07-05 18:10:22 +02:00
|
|
|
|
2017-07-30 13:47:11 +02:00
|
|
|
import dataset
|
|
|
|
|
2017-09-07 14:24:55 +02:00
|
|
|
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
|
|
|
|
|
2017-11-07 20:32:08 +01:00
|
|
|
|
|
|
|
def get_domain_embedding_model(embedding_size, input_length, filter_size, kernel_size, hidden_dims,
|
|
|
|
drop_out=0.5) -> KerasModel:
|
2017-07-05 18:10:22 +02:00
|
|
|
x = y = Input(shape=(input_length,))
|
2017-07-30 13:47:11 +02:00
|
|
|
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
2017-09-10 18:06:40 +02:00
|
|
|
y = Conv1D(filter_size,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu')(y)
|
2017-07-05 18:10:22 +02:00
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(drop_out)(y)
|
2017-10-19 17:37:29 +02:00
|
|
|
y = Dense(hidden_dims, activation="relu")(y)
|
2017-09-07 14:24:55 +02:00
|
|
|
return KerasModel(x, y)
|
2017-07-05 18:10:22 +02:00
|
|
|
|
|
|
|
|
2017-11-10 12:52:18 +01:00
|
|
|
def get_domain_embedding_model2(embedding_size, input_length, filter_size, kernel_size, hidden_dims,
|
|
|
|
drop_out=0.5) -> KerasModel:
|
|
|
|
x = y = Input(shape=(input_length,))
|
|
|
|
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
|
|
|
|
y = Conv1D(filter_size,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu')(y)
|
|
|
|
y = Conv1D(filter_size,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu')(y)
|
|
|
|
y = Conv1D(filter_size,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu')(y)
|
|
|
|
y = GlobalAveragePooling1D()(y)
|
|
|
|
y = Dense(hidden_dims, activation="relu")(y)
|
|
|
|
return KerasModel(x, y)
|
|
|
|
|
|
|
|
|
2017-11-07 20:32:08 +01:00
|
|
|
def get_final_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
|
|
dense_dim, cnn) -> Model:
|
2017-07-05 18:10:22 +02:00
|
|
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
2017-09-10 23:40:14 +02:00
|
|
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
2017-07-05 18:10:22 +02:00
|
|
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
|
|
# CNN processing a small slides of flow windows
|
|
|
|
y = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
2017-11-07 20:09:20 +01:00
|
|
|
activation='relu')(merged)
|
2017-07-05 18:10:22 +02:00
|
|
|
# remove temporal dimension by global max pooling
|
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(cnnDropout)(y)
|
2017-09-12 08:36:23 +02:00
|
|
|
y = Dense(dense_dim, activation='relu')(y)
|
2017-09-07 14:24:55 +02:00
|
|
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
|
|
out_server = Dense(1, activation='sigmoid', name="server")(y)
|
2017-07-05 18:10:22 +02:00
|
|
|
|
2017-09-07 14:24:55 +02:00
|
|
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
2017-07-29 19:42:36 +02:00
|
|
|
|
|
|
|
|
2017-11-07 20:32:08 +01:00
|
|
|
def get_inter_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
|
|
dense_dim, cnn) -> Model:
|
2017-07-29 19:42:36 +02:00
|
|
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
|
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
2017-09-10 23:40:14 +02:00
|
|
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
2017-08-05 09:33:07 +02:00
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
2017-09-10 18:06:40 +02:00
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation="relu",
|
|
|
|
name="dense_server")(merged)
|
2017-09-07 14:24:55 +02:00
|
|
|
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
2017-11-30 09:34:45 +01:00
|
|
|
merged = keras.layers.concatenate([merged,
|
|
|
|
y], -1)
|
2017-08-05 09:33:07 +02:00
|
|
|
# CNN processing a small slides of flow windows
|
2017-07-29 19:42:36 +02:00
|
|
|
y = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
2017-09-17 17:26:09 +02:00
|
|
|
activation='relu')(merged)
|
2017-07-29 19:42:36 +02:00
|
|
|
# remove temporal dimension by global max pooling
|
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(dropout)(y)
|
2017-09-10 18:06:40 +02:00
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation='relu',
|
|
|
|
name="dense_client")(y)
|
2017-07-29 19:42:36 +02:00
|
|
|
|
2017-09-07 14:24:55 +02:00
|
|
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
2017-07-29 19:42:36 +02:00
|
|
|
|
2017-09-07 14:24:55 +02:00
|
|
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
2017-10-05 15:26:53 +02:00
|
|
|
|
|
|
|
|
|
|
|
def get_server_model(flow_features, domain_length, dense_dim, cnn):
|
|
|
|
ipt_domains = Input(shape=(domain_length,), name="ipt_domains")
|
|
|
|
ipt_flows = Input(shape=(flow_features,), name="ipt_flows")
|
|
|
|
encoded = cnn(ipt_domains)
|
2017-10-09 14:19:01 +02:00
|
|
|
cnn.name = "domain_cnn"
|
|
|
|
|
2017-10-05 15:26:53 +02:00
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation="relu",
|
|
|
|
name="dense_server")(merged)
|
|
|
|
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
|
|
|
|
|
|
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
|
2017-11-05 22:52:50 +01:00
|
|
|
|
|
|
|
|
2017-11-07 20:32:08 +01:00
|
|
|
def get_long_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
2017-11-07 20:09:20 +01:00
|
|
|
dense_dim, cnn) -> Model:
|
2017-11-05 22:52:50 +01:00
|
|
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
|
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
|
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
|
|
y = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
2017-11-07 20:32:08 +01:00
|
|
|
activation='relu', name="conv_server")(merged)
|
2017-11-05 22:52:50 +01:00
|
|
|
# remove temporal dimension by global max pooling
|
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(dropout)(y)
|
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation="relu",
|
|
|
|
name="dense_server")(y)
|
|
|
|
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
|
|
|
# CNN processing a small slides of flow windows
|
2017-11-06 21:51:49 +01:00
|
|
|
y = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu', name="conv_client")(merged)
|
|
|
|
# remove temporal dimension by global max pooling
|
|
|
|
y = GlobalMaxPooling1D()(y)
|
|
|
|
y = Dropout(dropout)(y)
|
|
|
|
y = Dense(dense_dim,
|
|
|
|
activation='relu',
|
|
|
|
name="dense_client")(y)
|
|
|
|
|
|
|
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
|
|
|
|
|
|
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
2017-11-27 16:17:19 +01:00
|
|
|
|
|
|
|
|
|
|
|
class CrossStitch2(Layer):
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
super(CrossStitch2, self).__init__(**kwargs)
|
|
|
|
|
|
|
|
def build(self, input_shape):
|
|
|
|
# Create a trainable weight variable for this layer.
|
|
|
|
self.s = self.add_weight(name='cross-stitch-s',
|
|
|
|
shape=(1,),
|
|
|
|
initializer='uniform',
|
|
|
|
trainable=True)
|
|
|
|
self.d = self.add_weight(name='cross-stitch-d',
|
|
|
|
shape=(1,),
|
|
|
|
initializer='uniform',
|
|
|
|
trainable=True)
|
|
|
|
super(CrossStitch2, self).build(input_shape)
|
|
|
|
|
|
|
|
def call(self, xs):
|
|
|
|
x1, x2 = xs
|
|
|
|
out = x1 * self.s + x2 * self.d
|
|
|
|
return out
|
|
|
|
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
|
|
return input_shape[0]
|
|
|
|
|
|
|
|
|
|
|
|
class CrossStitchMix2(Layer):
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
super(CrossStitchMix2, self).__init__(**kwargs)
|
|
|
|
|
|
|
|
def build(self, input_shape):
|
|
|
|
# Create a trainable weight variable for this layer.
|
|
|
|
self.s = self.add_weight(name='cross-stitch-s',
|
|
|
|
shape=(1,),
|
|
|
|
initializer='uniform',
|
|
|
|
trainable=True)
|
|
|
|
self.d = self.add_weight(name='cross-stitch-d',
|
|
|
|
shape=(1,),
|
|
|
|
initializer='uniform',
|
|
|
|
trainable=True)
|
|
|
|
super(CrossStitchMix2, self).build(input_shape)
|
|
|
|
|
|
|
|
def call(self, xs):
|
|
|
|
x1, x2 = xs
|
2017-11-30 09:34:45 +01:00
|
|
|
out = K.concatenate((x1 * self.s, x2 * self.d), axis=-1)
|
2017-11-27 16:17:19 +01:00
|
|
|
return out
|
|
|
|
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
|
|
return (input_shape[0][0], input_shape[0][1] + input_shape[1][1])
|
|
|
|
|
|
|
|
|
2017-11-30 09:34:45 +01:00
|
|
|
class L21(Regularizer):
|
|
|
|
"""Regularizer for L21 regularization.
|
|
|
|
Found at: https://bitbucket.org/ispamm/group-lasso-for-neural-networks-tensorflow-keras
|
|
|
|
# Arguments
|
|
|
|
C: Float; L21 regularization factor.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, C=0.):
|
|
|
|
self.C = K.cast_to_floatx(C)
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
const_coeff = np.sqrt(K.int_shape(x)[1])
|
|
|
|
return self.C * const_coeff * K.sum(K.sqrt(K.sum(K.square(x), axis=1)))
|
|
|
|
|
|
|
|
def get_config(self):
|
|
|
|
return {'C': float(self.C)}
|
|
|
|
|
|
|
|
|
2017-11-27 16:17:19 +01:00
|
|
|
def get_sluice_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
|
|
dense_dim, cnn) -> Model:
|
|
|
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
|
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
|
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
|
|
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
|
|
y1 = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu', name="conv_server")(merged)
|
|
|
|
y1 = GlobalMaxPooling1D()(y1)
|
|
|
|
|
|
|
|
y2 = Conv1D(cnn_dims,
|
|
|
|
kernel_size,
|
|
|
|
activation='relu', name="conv_client")(merged)
|
|
|
|
y2 = GlobalMaxPooling1D()(y2)
|
|
|
|
|
|
|
|
c11 = CrossStitch2()([y1, y2])
|
|
|
|
c12 = CrossStitch2()([y1, y2])
|
|
|
|
|
|
|
|
y1 = Dropout(dropout)(c11)
|
|
|
|
y1 = Dense(dense_dim,
|
|
|
|
activation="relu",
|
|
|
|
name="dense_server")(y1)
|
|
|
|
|
|
|
|
y2 = Dropout(dropout)(c12)
|
|
|
|
y2 = Dense(dense_dim,
|
|
|
|
activation='relu',
|
|
|
|
name="dense_client")(y2)
|
|
|
|
|
|
|
|
c21 = CrossStitch2()([y1, y2])
|
|
|
|
c22 = CrossStitch2()([y1, y2])
|
|
|
|
|
|
|
|
beta1 = CrossStitchMix2()([c11, c21])
|
|
|
|
beta2 = CrossStitchMix2()([c12, c22])
|
|
|
|
|
|
|
|
out_server = Dense(1, activation="sigmoid", name="server")(beta1)
|
|
|
|
|
|
|
|
out_client = Dense(1, activation='sigmoid', name="client")(beta2)
|
|
|
|
|
|
|
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|