anthem-rs/src/translate/verify_properties.rs

495 lines
14 KiB
Rust

mod head_type;
mod translate_body;
use head_type::*;
use translate_body::*;
use crate::translate::common::AssignVariableDeclarationDomain as _;
struct ScopedFormula
{
free_variable_declarations: std::rc::Rc<foliage::VariableDeclarations>,
formula: Box<foliage::Formula>,
}
struct Definitions
{
head_atom_parameters: std::rc::Rc<foliage::VariableDeclarations>,
definitions: Vec<ScopedFormula>,
}
type VariableDeclarationDomains
= std::collections::BTreeMap<std::rc::Rc<foliage::VariableDeclaration>,
crate::translate::common::Domain>;
type VariableDeclarationIDs
= std::collections::BTreeMap::<std::rc::Rc<foliage::VariableDeclaration>, usize>;
struct Context
{
pub definitions: std::cell::RefCell<std::collections::BTreeMap::<std::rc::Rc<foliage::PredicateDeclaration>,
Definitions>>,
pub integrity_constraints: std::cell::RefCell<foliage::Formulas>,
pub function_declarations: std::cell::RefCell<foliage::FunctionDeclarations>,
pub predicate_declarations: std::cell::RefCell<foliage::PredicateDeclarations>,
pub variable_declaration_stack: std::cell::RefCell<foliage::VariableDeclarationStack>,
pub variable_declaration_domains: std::cell::RefCell<VariableDeclarationDomains>,
pub variable_declaration_ids: std::cell::RefCell<VariableDeclarationIDs>,
}
impl Context
{
fn new() -> Self
{
Self
{
definitions: std::cell::RefCell::new(std::collections::BTreeMap::<_, _>::new()),
integrity_constraints: std::cell::RefCell::new(vec![]),
function_declarations: std::cell::RefCell::new(foliage::FunctionDeclarations::new()),
predicate_declarations: std::cell::RefCell::new(foliage::PredicateDeclarations::new()),
variable_declaration_stack: std::cell::RefCell::new(foliage::VariableDeclarationStack::new()),
variable_declaration_domains: std::cell::RefCell::new(VariableDeclarationDomains::new()),
variable_declaration_ids: std::cell::RefCell::new(VariableDeclarationIDs::new()),
}
}
}
impl crate::translate::common::GetOrCreateFunctionDeclaration for Context
{
fn get_or_create_function_declaration(&self, name: &str, arity: usize)
-> std::rc::Rc<foliage::FunctionDeclaration>
{
let mut function_declarations = self.function_declarations.borrow_mut();
match function_declarations.iter()
.find(|x| x.name == name && x.arity == arity)
{
Some(value) => std::rc::Rc::clone(value),
None =>
{
let declaration = std::rc::Rc::new(foliage::FunctionDeclaration::new(
name.to_string(), arity));
function_declarations.insert(std::rc::Rc::clone(&declaration));
log::debug!("new function declaration: {}/{}", name, arity);
declaration
},
}
}
}
impl crate::translate::common::GetOrCreatePredicateDeclaration for Context
{
fn get_or_create_predicate_declaration(&self, name: &str, arity: usize)
-> std::rc::Rc<foliage::PredicateDeclaration>
{
let mut predicate_declarations = self.predicate_declarations.borrow_mut();
match predicate_declarations.iter()
.find(|x| x.name == name && x.arity == arity)
{
Some(value) => std::rc::Rc::clone(value),
None =>
{
let declaration = std::rc::Rc::new(foliage::PredicateDeclaration::new(
name.to_string(), arity));
predicate_declarations.insert(std::rc::Rc::clone(&declaration));
log::debug!("new predicate declaration: {}/{}", name, arity);
declaration
},
}
}
}
impl crate::translate::common::GetOrCreateVariableDeclaration for Context
{
fn get_or_create_variable_declaration(&self, name: &str)
-> std::rc::Rc<foliage::VariableDeclaration>
{
let mut variable_declaration_stack = self.variable_declaration_stack.borrow_mut();
// TODO: check correctness
if name == "_"
{
let variable_declaration = std::rc::Rc::new(foliage::VariableDeclaration::new(
"_".to_owned()));
variable_declaration_stack.free_variable_declarations.push(
std::rc::Rc::clone(&variable_declaration));
return variable_declaration;
}
variable_declaration_stack.find_or_create(name)
}
}
impl crate::translate::common::AssignVariableDeclarationDomain for Context
{
fn assign_variable_declaration_domain(&self,
variable_declaration: &std::rc::Rc<foliage::VariableDeclaration>,
domain: crate::translate::common::Domain)
{
let mut variable_declaration_domains = self.variable_declaration_domains.borrow_mut();
match variable_declaration_domains.get(variable_declaration)
{
Some(current_domain) => assert_eq!(*current_domain, domain,
"inconsistent variable declaration domain"),
None =>
{
variable_declaration_domains
.insert(std::rc::Rc::clone(variable_declaration).into(), domain);
},
}
}
}
impl crate::translate::common::VariableDeclarationDomain for Context
{
fn variable_declaration_domain(&self,
variable_declaration: &std::rc::Rc<foliage::VariableDeclaration>)
-> Option<crate::translate::common::Domain>
{
let variable_declaration_domains = self.variable_declaration_domains.borrow();
variable_declaration_domains.get(variable_declaration)
.map(|x| *x)
}
}
impl crate::translate::common::VariableDeclarationID for Context
{
fn variable_declaration_id(&self,
variable_declaration: &std::rc::Rc<foliage::VariableDeclaration>)
-> usize
{
let mut variable_declaration_ids = self.variable_declaration_ids.borrow_mut();
match variable_declaration_ids.get(variable_declaration)
{
Some(id) =>
{
//log::trace!("{:p} → {} (already known)", *variable_declaration, id);
*id
}
None =>
{
let id = variable_declaration_ids.len();
variable_declaration_ids.insert(std::rc::Rc::clone(variable_declaration).into(), id);
//log::trace!("{:p} → {} (new)", *variable_declaration, id);
id
},
}
}
}
struct StatementHandler
{
context: Context,
}
impl StatementHandler
{
fn new() -> Self
{
Self
{
context: Context::new(),
}
}
}
impl clingo::StatementHandler for StatementHandler
{
fn on_statement(&mut self, statement: &clingo::ast::Statement) -> bool
{
match statement.statement_type()
{
clingo::ast::StatementType::Rule(ref rule) =>
{
if let Err(error) = read_rule(rule, &mut self.context)
{
log::error!("could not translate input program: {}", error);
return false;
}
},
_ => log::debug!("read statement (other kind)"),
}
true
}
}
struct Logger;
impl clingo::Logger for Logger
{
fn log(&mut self, code: clingo::Warning, message: &str)
{
log::warn!("clingo warning ({:?}): {}", code, message);
}
}
pub fn translate<P>(program_paths: &[P]) -> Result<(), crate::Error>
where
P: AsRef<std::path::Path>
{
let mut statement_handler = StatementHandler::new();
for program_path in program_paths
{
let program = std::fs::read_to_string(program_path.as_ref())
.map_err(|error| crate::Error::new_read_file(program_path.as_ref().to_path_buf(), error))?;
clingo::parse_program_with_logger(&program, &mut statement_handler, &mut Logger, std::u32::MAX)
.map_err(|error| crate::Error::new_translate(error))?;
}
let context = statement_handler.context;
for (predicate_declaration, definitions) in context.definitions.borrow().iter()
{
for definition in definitions.definitions.iter()
{
log::debug!("definition({}/{}): {}.", predicate_declaration.name, predicate_declaration.arity,
definition.formula);
}
}
let completed_definition = |predicate_declaration|
{
match context.definitions.borrow_mut().remove(predicate_declaration)
{
// This predicate symbol has at least one definition, so build the disjunction of those
Some(definitions) =>
{
let or_arguments = definitions.definitions.into_iter()
.map(|x| existential_closure(x))
.collect::<Vec<_>>();
let or = foliage::Formula::or(or_arguments);
let head_arguments = definitions.head_atom_parameters.iter()
.map(|x| Box::new(foliage::Term::variable(x)))
.collect::<Vec<_>>();
let head_predicate = foliage::Formula::predicate(&predicate_declaration,
head_arguments);
let completed_definition = foliage::Formula::if_and_only_if(
Box::new(head_predicate), Box::new(or));
let scoped_formula = ScopedFormula
{
free_variable_declarations: definitions.head_atom_parameters,
formula: Box::new(completed_definition),
};
universal_closure(scoped_formula)
},
// This predicate has no definitions, so universally falsify it
None =>
{
let head_atom_parameters = std::rc::Rc::new((0..predicate_declaration.arity)
.map(|_|
{
let variable_declaration = std::rc::Rc::new(
foliage::VariableDeclaration::new("<anonymous>".to_string()));
context.assign_variable_declaration_domain(&variable_declaration,
crate::translate::common::Domain::Program);
variable_declaration
})
.collect::<Vec<_>>());
let head_arguments = head_atom_parameters.iter()
.map(|x| Box::new(foliage::Term::variable(x)))
.collect();
let head_predicate = foliage::Formula::predicate(&predicate_declaration,
head_arguments);
let not = foliage::Formula::not(Box::new(head_predicate));
let scoped_formula = ScopedFormula
{
free_variable_declarations: head_atom_parameters,
formula: Box::new(not),
};
universal_closure(scoped_formula)
},
}
};
let predicate_declarations = context.predicate_declarations.borrow();
let completed_definitions = predicate_declarations.iter()
.map(|x| (std::rc::Rc::clone(x), completed_definition(x)));
for (predicate_declaration, completed_definition) in completed_definitions
{
println!("tff(completion_{}_{}, axiom, {}).", predicate_declaration.name,
predicate_declaration.arity,
crate::output::tptp::display_formula(&completed_definition, &context));
}
for integrity_constraint in context.integrity_constraints.borrow().iter()
{
println!("tff(integrity_constraint, axiom, {}).",
crate::output::tptp::display_formula(&integrity_constraint, &context));
}
Ok(())
}
fn read_rule(rule: &clingo::ast::Rule, context: &Context)
-> Result<(), crate::Error>
{
let head_type = determine_head_type(rule.head(), context)?;
match &head_type
{
HeadType::SingleAtom(head_atom)
| HeadType::ChoiceWithSingleAtom(head_atom) =>
{
if !context.definitions.borrow().contains_key(&head_atom.predicate_declaration)
{
let head_atom_parameters = std::rc::Rc::new((0..head_atom.predicate_declaration.arity)
.map(|_|
{
let variable_declaration = std::rc::Rc::new(
foliage::VariableDeclaration::new("<anonymous>".to_string()));
context.assign_variable_declaration_domain(&variable_declaration,
crate::translate::common::Domain::Program);
variable_declaration
})
.collect());
context.definitions.borrow_mut().insert(
std::rc::Rc::clone(&head_atom.predicate_declaration),
Definitions
{
head_atom_parameters,
definitions: vec![],
});
}
let mut definitions = context.definitions.borrow_mut();
let definitions = definitions.get_mut(&head_atom.predicate_declaration).unwrap();
let head_atom_parameters = std::rc::Rc::clone(&definitions.head_atom_parameters);
context.variable_declaration_stack.borrow_mut().push(head_atom_parameters);
let mut definition_arguments = translate_body(rule.body(), context)?;
assert_eq!(definitions.head_atom_parameters.len(), head_atom.arguments.len());
if let HeadType::ChoiceWithSingleAtom(_) = head_type
{
let head_arguments = definitions.head_atom_parameters.iter()
.map(|x| Box::new(foliage::Term::variable(x)))
.collect::<Vec<_>>();
let head_predicate = foliage::Formula::predicate(&head_atom.predicate_declaration,
head_arguments);
definition_arguments.push(Box::new(head_predicate));
}
let mut head_atom_arguments_iterator = head_atom.arguments.iter();
for head_atom_parameter in definitions.head_atom_parameters.iter()
{
let head_atom_argument = head_atom_arguments_iterator.next().unwrap();
let translated_head_term = crate::translate::common::choose_value_in_term(
head_atom_argument, head_atom_parameter, context)?;
definition_arguments.push(Box::new(translated_head_term));
}
context.variable_declaration_stack.borrow_mut().pop();
let mut free_variable_declarations = vec![];
std::mem::swap(
&mut context.variable_declaration_stack.borrow_mut().free_variable_declarations,
&mut free_variable_declarations);
let definition = match definition_arguments.len()
{
1 => definition_arguments.pop().unwrap(),
0 => Box::new(foliage::Formula::true_()),
_ => Box::new(foliage::Formula::and(definition_arguments)),
};
let definition = ScopedFormula
{
free_variable_declarations: std::rc::Rc::new(free_variable_declarations),
formula: definition,
};
log::debug!("translated rule with single atom in head: {:?}", definition.formula);
definitions.definitions.push(definition);
},
HeadType::IntegrityConstraint =>
{
let mut arguments = translate_body(rule.body(), context)?;
let mut free_variable_declarations = vec![];
std::mem::swap(
&mut context.variable_declaration_stack.borrow_mut().free_variable_declarations,
&mut free_variable_declarations);
let formula = match arguments.len()
{
1 => foliage::Formula::not(arguments.pop().unwrap()),
0 => foliage::Formula::false_(),
_ => foliage::Formula::not(Box::new(foliage::Formula::and(arguments))),
};
let scoped_formula = ScopedFormula
{
free_variable_declarations: std::rc::Rc::new(free_variable_declarations),
formula: Box::new(formula),
};
let integrity_constraint = universal_closure(scoped_formula);
log::debug!("translated integrity constraint: {:?}", integrity_constraint);
context.integrity_constraints.borrow_mut().push(integrity_constraint);
},
HeadType::Trivial => log::info!("skipping trivial rule"),
}
Ok(())
}
fn existential_closure(scoped_formula: ScopedFormula) -> Box<foliage::Formula>
{
match scoped_formula.free_variable_declarations.is_empty()
{
true => scoped_formula.formula,
false => Box::new(foliage::Formula::exists(scoped_formula.free_variable_declarations,
scoped_formula.formula)),
}
}
fn universal_closure(scoped_formula: ScopedFormula) -> Box<foliage::Formula>
{
match scoped_formula.free_variable_declarations.is_empty()
{
true => scoped_formula.formula,
false => Box::new(foliage::Formula::for_all(scoped_formula.free_variable_declarations,
scoped_formula.formula)),
}
}