mod head_type; mod translate_body; use head_type::*; use translate_body::*; pub struct ScopedFormula { free_variable_declarations: foliage::VariableDeclarations, formula: foliage::Formula, } pub struct Definitions { head_atom_parameters: foliage::VariableDeclarations, definitions: Vec, } pub fn read(rule: &clingo::ast::Rule) -> Result<(), crate::Error> { let mut function_declarations = foliage::FunctionDeclarations::new(); let mut predicate_declarations = foliage::PredicateDeclarations::new(); let mut variable_declaration_stack = foliage::VariableDeclarationStack::new(); let head_type = determine_head_type(rule.head(), |name, arity| super::common::find_or_create_predicate_declaration( &mut predicate_declarations, name, arity))?; let mut definitions = std::collections::BTreeMap::, Definitions>::new(); let declare_predicate_parameters = |predicate_declaration: &foliage::PredicateDeclaration| { (0..predicate_declaration.arity) .map(|_| std::rc::Rc::new(foliage::VariableDeclaration { name: "".to_string(), })) .collect() }; match head_type { HeadType::SingleAtom(head_atom) => { if !definitions.contains_key(&head_atom.predicate_declaration) { definitions.insert(std::rc::Rc::clone(&head_atom.predicate_declaration), Definitions { head_atom_parameters: declare_predicate_parameters(&head_atom.predicate_declaration), definitions: vec![], }); } let definitions = definitions.get(&head_atom.predicate_declaration).unwrap(); }, HeadType::ChoiceWithSingleAtom(test) => log::debug!("translating choice rule with single atom"), HeadType::IntegrityConstraint => log::debug!("translating integrity constraint"), HeadType::Trivial => { log::debug!("skipping trivial rule"); return Ok(()); }, } Ok(()) }