mod head_type; mod translate_body; use head_type::*; use translate_body::*; struct ScopedFormula { free_variable_declarations: std::rc::Rc, formula: Box, } struct Definitions { head_atom_parameters: std::rc::Rc, definitions: Vec, } struct Context { pub definitions: std::collections::BTreeMap::, Definitions>, pub integrity_constraints: foliage::Formulas, pub function_declarations: foliage::FunctionDeclarations, pub predicate_declarations: foliage::PredicateDeclarations, pub variable_declaration_stack: foliage::VariableDeclarationStack, } impl Context { fn new() -> Self { Self { definitions: std::collections::BTreeMap::<_, _>::new(), integrity_constraints: vec![], function_declarations: foliage::FunctionDeclarations::new(), predicate_declarations: foliage::PredicateDeclarations::new(), variable_declaration_stack: foliage::VariableDeclarationStack::new(), } } } struct StatementHandler { context: Context, } impl StatementHandler { fn new() -> Self { Self { context: Context::new(), } } } impl clingo::StatementHandler for StatementHandler { fn on_statement(&mut self, statement: &clingo::ast::Statement) -> bool { match statement.statement_type() { clingo::ast::StatementType::Rule(ref rule) => { if let Err(error) = read_rule(rule, &mut self.context) { log::error!("could not translate input program: {}", error); return false; } }, _ => log::debug!("read statement (other kind)"), } true } } struct Logger; impl clingo::Logger for Logger { fn log(&mut self, code: clingo::Warning, message: &str) { log::warn!("clingo warning ({:?}): {}", code, message); } } pub fn translate

(program_paths: &[P]) -> Result<(), crate::Error> where P: AsRef { let mut statement_handler = StatementHandler::new(); for program_path in program_paths { let program = std::fs::read_to_string(program_path.as_ref()) .map_err(|error| crate::Error::new_read_file(program_path.as_ref().to_path_buf(), error))?; clingo::parse_program_with_logger(&program, &mut statement_handler, &mut Logger, std::u32::MAX) .map_err(|error| crate::Error::new_translate(error))?; } let context = statement_handler.context; let mut definitions = context.definitions; let integrity_constraints = context.integrity_constraints; let predicate_declarations = context.predicate_declarations; for (predicate_declaration, definitions) in definitions.iter() { for definition in definitions.definitions.iter() { log::debug!("definition({}/{}): {}.", predicate_declaration.name, predicate_declaration.arity, definition.formula); } } let mut completed_definition = |predicate_declaration| { match definitions.remove(predicate_declaration) { // This predicate symbol has at least one definition, so build the disjunction of those Some(definitions) => { let or_arguments = definitions.definitions.into_iter() .map(|x| existential_closure(x)) .collect::>(); let or = foliage::Formula::or(or_arguments); let head_arguments = definitions.head_atom_parameters.iter() .map(|x| Box::new(foliage::Term::variable(x))) .collect::>(); let head_predicate = foliage::Formula::predicate(&predicate_declaration, head_arguments); let completed_definition = foliage::Formula::if_and_only_if( Box::new(head_predicate), Box::new(or)); let scoped_formula = ScopedFormula { free_variable_declarations: definitions.head_atom_parameters, formula: Box::new(completed_definition), }; universal_closure(scoped_formula) }, // This predicate has no definitions, so universally falsify it None => { let head_atom_parameters = std::rc::Rc::new((0..predicate_declaration.arity) .map(|_| std::rc::Rc::new(foliage::VariableDeclaration::new("".to_string()))) .collect::>()); let head_arguments = head_atom_parameters.iter() .map(|x| Box::new(foliage::Term::variable(x))) .collect(); let head_predicate = foliage::Formula::predicate(&predicate_declaration, head_arguments); let not = foliage::Formula::not(Box::new(head_predicate)); let scoped_formula = ScopedFormula { free_variable_declarations: head_atom_parameters, formula: Box::new(not), }; universal_closure(scoped_formula) }, } }; let completed_definitions = predicate_declarations.iter() .map(|x| (std::rc::Rc::clone(x), completed_definition(x))); for (predicate_declaration, completed_definition) in completed_definitions { println!("tff(completion_{}_{}, axiom, {}).", predicate_declaration.name, predicate_declaration.arity, crate::output::tptp::display_formula(&completed_definition)); } for integrity_constraint in integrity_constraints { println!("tff(integrity_constraint, axiom, {}).", crate::output::tptp::display_formula(&integrity_constraint)); } Ok(()) } fn read_rule(rule: &clingo::ast::Rule, context: &mut Context) -> Result<(), crate::Error> { use super::common::FindOrCreatePredicateDeclaration; let head_type = determine_head_type(rule.head(), |name, arity| context.predicate_declarations.find_or_create(name, arity))?; match &head_type { HeadType::SingleAtom(head_atom) | HeadType::ChoiceWithSingleAtom(head_atom) => { if !context.definitions.contains_key(&head_atom.predicate_declaration) { let head_atom_parameters = std::rc::Rc::new((0..head_atom.predicate_declaration.arity) .map(|_| std::rc::Rc::new(foliage::VariableDeclaration::new("".to_string()))) .collect()); context.definitions.insert(std::rc::Rc::clone(&head_atom.predicate_declaration), Definitions { head_atom_parameters, definitions: vec![], }); } let definitions = context.definitions.get_mut(&head_atom.predicate_declaration).unwrap(); context.variable_declaration_stack.push(std::rc::Rc::clone( &definitions.head_atom_parameters)); let mut definition_arguments = translate_body(rule.body(), &mut context.function_declarations, &mut context.predicate_declarations, &mut context.variable_declaration_stack)?; assert_eq!(definitions.head_atom_parameters.len(), head_atom.arguments.len()); if let HeadType::ChoiceWithSingleAtom(_) = head_type { let head_arguments = definitions.head_atom_parameters.iter() .map(|x| Box::new(foliage::Term::variable(x))) .collect::>(); let head_predicate = foliage::Formula::predicate(&head_atom.predicate_declaration, head_arguments); definition_arguments.push(Box::new(head_predicate)); } let mut head_atom_arguments_iterator = head_atom.arguments.iter(); for head_atom_parameter in definitions.head_atom_parameters.iter() { let head_atom_argument = head_atom_arguments_iterator.next().unwrap(); let translated_head_term = crate::translate::common::choose_value_in_term( head_atom_argument, head_atom_parameter, &mut context.function_declarations, &mut context.variable_declaration_stack)?; definition_arguments.push(Box::new(translated_head_term)); } context.variable_declaration_stack.pop(); let mut free_variable_declarations = vec![]; std::mem::swap(&mut context.variable_declaration_stack.free_variable_declarations, &mut free_variable_declarations); let definition = match definition_arguments.len() { 1 => definition_arguments.pop().unwrap(), 0 => Box::new(foliage::Formula::true_()), _ => Box::new(foliage::Formula::and(definition_arguments)), }; let definition = ScopedFormula { free_variable_declarations: std::rc::Rc::new(free_variable_declarations), formula: definition, }; log::debug!("translated rule with single atom in head: {:?}", definition.formula); definitions.definitions.push(definition); }, HeadType::IntegrityConstraint => { let mut arguments = translate_body(rule.body(), &mut context.function_declarations, &mut context.predicate_declarations, &mut context.variable_declaration_stack)?; let mut free_variable_declarations = vec![]; std::mem::swap(&mut context.variable_declaration_stack.free_variable_declarations, &mut free_variable_declarations); let formula = match arguments.len() { 1 => foliage::Formula::not(arguments.pop().unwrap()), 0 => foliage::Formula::false_(), _ => foliage::Formula::not(Box::new(foliage::Formula::and(arguments))), }; let scoped_formula = ScopedFormula { free_variable_declarations: std::rc::Rc::new(free_variable_declarations), formula: Box::new(formula), }; let integrity_constraint = universal_closure(scoped_formula); log::debug!("translated integrity constraint: {:?}", integrity_constraint); context.integrity_constraints.push(integrity_constraint); }, HeadType::Trivial => log::info!("skipping trivial rule"), } Ok(()) } fn existential_closure(scoped_formula: ScopedFormula) -> Box { match scoped_formula.free_variable_declarations.is_empty() { true => scoped_formula.formula, false => Box::new(foliage::Formula::exists(scoped_formula.free_variable_declarations, scoped_formula.formula)), } } fn universal_closure(scoped_formula: ScopedFormula) -> Box { match scoped_formula.free_variable_declarations.is_empty() { true => scoped_formula.formula, false => Box::new(foliage::Formula::for_all(scoped_formula.free_variable_declarations, scoped_formula.formula)), } }