
 1

What to Do When It is
Already Too Late ?

Crashdumps for Embedded Systems

Christoph Sterz
christoph.sterz@kdab.com

 2

Content
1. Background, the Situation in Embedded

2.Working with Coredumps

3.Signal Handlers

4.Special Watchdogs

5.My Serving Suggestion:
1. Yocto, and…

2. Google Breakpad, and…

3. Sentry

6.On Collecting Crashdumps From Users

 3

Scope of this Talk
● Crashes mostly in C/C++
● On Embedded Linux

– (parts apply for Windows, QNX as well)

● Crashes induced from the inside and outside of processes

● No kernel panics, the OS must be functioning at this point
● SW-Devs’-Assumption-#1 holds: Hardware just works

1. Background
 Embrace the Fail ❤️

 5

Crashes in Development And Production

● Dev Environment on
Embedded Devices
– All Symbols
– gdb(server) on target
– Fullsize dumps
– EvalBoards
– Small Testing Surface

● In Production
– Slim Images
– Slim Dumps(Stack only) / Reduced

Bandwidth
– (Often more limited) production

hardware
– Large Testing Surface

breakpad.bbclass contains this, always executed for a class inheriting breakpad

 6

Crashes in Development And Production

● Dev Environment on
Embedded Devices
– All Symbols
– gdb(server) on target
– Fullsize dumps
– EvalBoards
– Small Testing Surface

● In Production
– Slim Images
– Slim Dumps(Stack only) / Reduced

Bandwidth
– (Often more limited) production

hardware
– Large Testing Surface

Boils down to

storage <vs.> no storage

 7

Crashdumps and Symbols
● Symbols are needed:

– To make addresses readable for
humans

– To reconstruct the contents of the
Stack

– To infer Line Numbers

● You will get symbols with -g
● Symbols are independent of

optimization (-g, -O2)
● Symbols are huge 😅

App with
Symbols

AppApp

Symbols

stripping

App with
Symbols

AppApp

Symbols

stripping

AppApp

Symbols

App with
Symbols

App

Symbols

unstripping

Symbols

Memory
Dump

#3 foo(…)
#2 bar(…)
#1 baz(…)
#0 fail(...)

Stacktrace
 (stack)

unwinding

 8

v

v

Code is embedded
in many
execution
contexts. libs / frameworks

& your code

c-runtime

process

systemd, systemv,
appmanager, OS

hardware

Image : Jussi Kilpelainen

2. Coredumps

Image : Jussi Kilpelainen

4 Bytes of Core Memory: Arduino Module

 10

What do Coredumps Look Like?
Regular ELF Header

(except e_type is ET_CORE)
Page Info for the

VirtualMemoryAddresses
Notes

(Registers of Threads, etc)
Process Info

(uid, gid, state, …)
Thread Info

(state, siginfo, …)

Mapped File InfoMapped File Info

<Dumped Memory>

Describes the
 Memory almost
like ELF-Sections

 11

Prerequisites
● CONFIG_COREDUMP enabled when compiling the Kernel
● Executable must be readable (cores reveal your secrets…)
● Process must have permissions to write the core

Special problems on embedded:
● You need enough space to store it
● You need enough bandwidth to transfer it

 12

Enable by setting limits

 13

/proc/sys/kernel/core_pattern

Path containing %P %u %g %s %t %c %h

PID
uid

gid signal

coresize
hostname

time of dump

 14

CoreDumps: Did you know?
● You can madvise memory pages to be excluded from a

coredump
– Use madvise with MADV_DONTDUMP flag

● You can pipe coredumps to stdin of another process
– Make your corePattern start with a | character, followed by the receiving process
– Systemd coredumpctl does It |/usr/lib/systemd/systemd-coredump

● GDBs gcore can create a core of a running process
– and the process survives

 15

Development: have GDB on your target!
● At the Development stage, just have a gdb on the target
● Find a way to store the coredump
● If you get a crash producing a coredump, rejoin symbols:

– Use the elfutils bin eu-unstrip <executable> <symbols>
– Repeat for all relevant libraries you need for heap / stack

● Its a bit tedious, its worth it, if you need heap information
● If no heap is needed, there are better ways

 16

● A cross-gdb (from your toolchain) on your Desktop
● The exact same executable that crashed (with symbols!)
● Symbols for all relevant libraries when it crashed
● The core file
● Optionally /proc/kallsyms from the target
● Carefully feed SDK-Paths and Libs to get a stacktrace

Cross-Platform CoreDump Analysis

 17

GDB-Server: A Hybrid

gdbserver

executable

cross-gdb

App
symbols

Lib
symbols

host target

Poor-Man’s SlimDump: Backward-Cpp

 19

By François-Xavier Bourlet, @bombela
– The Pitch

Tired of seeing this ?

 20

Then Try backward-cpp :)

 21

Backward-cpp
● Include a header + 1 Line of initialization, done

– You might need to add some unwinding libraries for it in your Sysroot

● Symbols are necessary in build (-g), fat binaries
● Does stack unwinding in the signal handlers
● Requires access to the source code to print it
● Can be easily customized further

 → This is great for Development!

The Sanitizers can help you as well.

 23

Crash output of an executable, instrumented with the gcc/clang address sanitizer

No Symbols?, Unwinding Fails?
You can still resort to:

»Desperate-Stack-Reading«

 25

Printing raw stack memory, garnished with symbols
take everything with teaspoons of salt

3. Signal Handlers can act
when its already too late.

But they are limited
– use them with care!

 27

They can be registered by std::signal(…)

… or POSIX sigaction(…) for a bit more elaborate infos on the signal

typedef struct {
int si_signo;
int si_code;
union sigval si_value;
int si_errno;
pid_t si_pid;
uid_t si_uid;
void *si_addr;
int si_status;
int si_band;

} siginfo_t;
//member of sigaction

Sender
Info

 28

Signalhandlers / Crashhandlers look much like plain C code

 29

Things not allowed in the Signal Handler
● Heap allocations are forbidden, because not async-safe
● One is only permitted to execute “safe” operations

– That is basically everything that does not use malloc/free
– Check man signal-safety for it
– Code looks much like pure C-Code then

● Be hyper-careful of Crashes in Crash Handlers.
You have been warned :)

 30

Things allowed in the Signal Handler
● Start new processes (wow!)
● Obviously reading heap memory
● Send signal to self raise(SIGNAL);
● Most important for embedded: Reinstate safety in your embedded device

● Check out the KDABs QML stack trace dumper [1].
– Actually unsafe, because it allocates
– but worth the gamble in development, its too late anyways, right?

[1] https://github.com/KDAB/KDToolBox/tree/master/qt/qml/QmlStackTraceHelper

Watchdog-like processes can assist

 32

It makes sense to have Watchdogs
out of the main execution Context

● There exist not only crashes, but also infinite loops
– Idea: Reset an external watchdog periodically, infinite loops are detected

● It can make sense to inject SIGABRT from the outside
● A stack trace will be produced and loop analysis is possible

 33

The OOM(Out of Memory)-killer
● Most famous external source of an unwanted termination
● Based heuristics, kills programs to regain memory
● Stack dumps are of limited use in analysis here

– Use mallinfo() or heap-snapshots to find out the reason of OOM
– Maybe not your processes fault: write /proc/meminfo or the output of free

● Sends SIGKILL in rare cases also SIGTERM
– Use the sigaction() registration to find out if OOM-killer was the sender

In Practice:
Google Breakpad + Sentry + Yocto

 35

General Architecture

Yocto

Email

Hardware

SymbolServer

⚡Crash

Symbols

App

Breakpad
Handler

Break-
pad

Dump
Extra
Info

App
Recipe

(changes) handle&react

 36

Integrate Google Breakpad into Yocto
● Breakpad Recipes included in meta-oe/recipes-devtools

– Creates all cross-tools needed
– Creates the header-only library needed for the custom Signal Handler
– Provides a yocto .bbclass to be added to your app recipe

● This then splits out symbols before app-binary is stripped by yocto

● Extras can be added in your individual app recipe

Symbols

 37

myapp.bb: I extend the breakpad step to have 2 executables and do the upload on every build

breakpad.bbclass contains this, always executed for a class inheriting breakpad

… now every yoctobuild uploads the symbols !

 38

Example for file libQt5Core.so : It is important, that debug info is present

For the other libs, I use the yocto-built SDK, it contains split debug symbols in .debug folders

… from there it is uploaded like all symbs with sentry-cli

 39

More Infos on Google Breakpad
● Uses Minidumps

– Originally envisioned by Microsoft
– Similar to slim cores, but way smaller (around 20KiB)
– Cross-platform (unix cores don’t work on Windows, settled on minidump)
– Splitting command: dump_symbs executable > /path/to/destination.symbs

● Minidump comes with some useful tools
– minidump_stackwalk: Re-Combine Minidump+App+Symbols get a stack→

– minidump-2-core: Converts dump to gdb-readable format
– and more…

 40

Integrate Breakpad in your Code
● Breakpads library and headers are included in the new SDK

when using it in any of your recipes
● Only 2 extra lines in main() are necessary to register
● Of course you can do more in your custom Handler

App

Breakpad
Handler

libbreakpad_client.a

 41

Register the handler in your main(), pass any variables to be used

Include Breakpad Header,
Handle crashes and write extra information

Register Breakpad
Handler

Write Extra
Information

 42

Sending the Information
● Let a daemon check the

crash folder for crashes
– Not known if device has connectivity
– Daemon checks periodically if a

minidump is available
– If allowed in the User-settings, Info

is uploaded to the sentry server

● For now, no logs are
uploaded, maybe in the
future… Hardware

App

Breakpad
Handler

Break-
pad

Dump

Extra
Info

⚡

Daemon

Crash

 43

Snip from the Crashdaemon,
A file watcher looks for crash data and uploads it, when possible
Extra tag info is garnished for sentry

 44

Result: Sentry collects the Crashes

//Categorized

 45

The Result(II)

//Symbols available

//Extra Information //Breakpad Information

//Symbols not available

 46

Mail

 47

More about Sentry
● Clustering of Crashes is configurable
● Supports many DumpFormats

– Not in this talk: Sentry Native Dumps

● Supports external Symbol Servers
– Some Companies (Microsoft, Autodesk, …) offer symbols even for their

closed-source products online

● Self-hosted, or ~25€/mo

GDPR?
<Im not a lawyer>, but… ⚖️

 49

On uploading crash(=user)data
● We run it for development/staging/testing only
● If production is involved, plan to make it opt-in for users
● Practically, stack information might contain all information

If dumps are anonymous and your users know that telemetry is
recorded and for what purpose the data is collected, one
should be fine.

… </but I’m not a lawyer>

Overall, there is still much one can
do, when its already too late

I showed you classic ways in theory
and one way I like in practice

Invest in learning from your crashes
—it pays off plenty!

#1

#2

#3

 51

Pointers and Sources
● [Strip and unstrip Symbols]

https://sourceware.org/elfutils/
● [4Byte Ferrite Core Memory for Arduino]

https://www.tindie.com/products/kilpelaj/core-
memory-shield-for-arduino/

● [Anatomy of a coredump]
https://www.gabriel.urdhr.fr/2015/05/29/core-
file/

● [Prerequisits for coredumps]
https://man7.org/linux/man-pages/man5/core.5.
html

● [Stacktraces with Backward-cpp]
https://github.com/bombela/backward-cpp

● [Stacktraces from the Address the Sanitizer]
https://clang.llvm.org/docs/AddressSanitizer.html

● [Handlers std::signal(…)]
https://en.cppreference.com/w/cpp/utility/program/
signal

● [Handlers Sigaction]
https://pubs.opengroup.org/onlinepubs/9699919799/fu
nctions/sigaction.html

● [Infos on OOM killer]
https://docs.memset.com/other/linux-s-oom-process-
killer

● [Breakpad Yocto Recipe]
https://git.congatec.com/yocto/meta-openembedded/c
ommit/a4657e4395e0714198c34f02c54043edb8baeafb

● [Mozilla Minidump Tools]
https://github.com/mozilla-services/minidump-
stackwalk

● [Sentry, Sentry-CLI]
https://sentry.io
https://docs.sentry.io/product/cli/

 52

End Of Talk!

I will answer all questions, AMA!

Christoph Sterz
christoph.sterz@kdab.com

	Slide 1
	Slide 2
	Slide 3
	Section slide
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

