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Crashdumps for Embedded Systems

Christoph Sterz 
christoph.sterz@kdab.com



 2

Content
1. Background, the Situation in Embedded

2.Working with Coredumps

3.Signal Handlers 

4.Special Watchdogs

5.My Serving Suggestion:
1. Yocto, and…

2. Google Breakpad, and…

3. Sentry

6.On Collecting Crashdumps From Users



 3

Scope of this Talk
● Crashes mostly in C/C++
● On Embedded Linux 

– (parts apply for Windows, QNX as well)

● Crashes induced from the inside and outside of processes

● No kernel panics, the OS must be functioning at this point
● SW-Devs’-Assumption-#1 holds:  Hardware just works 

 



1. Background
    Embrace the Fail ❤️
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Crashes in Development And Production

● Dev Environment on 
Embedded Devices
– All Symbols
– gdb(server) on target 
– Fullsize dumps
– EvalBoards
– Small Testing Surface

● In Production
– Slim Images
– Slim Dumps(Stack only)  / Reduced 

Bandwidth 
– (Often more limited) production 

hardware
– Large Testing Surface

breakpad.bbclass contains this, always executed for a class inheriting breakpad
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Crashes in Development And Production

● Dev Environment on 
Embedded Devices
– All Symbols
– gdb(server) on target 
– Fullsize dumps
– EvalBoards
– Small Testing Surface

● In Production
– Slim Images
– Slim Dumps(Stack only)  / Reduced 

Bandwidth 
– (Often more limited) production 

hardware
– Large Testing Surface

Boils down to

storage <vs.> no storage
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Crashdumps and Symbols
● Symbols are needed: 

– To make addresses readable for 
humans 

– To reconstruct the contents of the 
Stack

– To infer Line Numbers 

● You will get symbols with -g 
● Symbols are independent of 

optimization (-g, -O2)
● Symbols are huge 😅
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v

v

Code is embedded
in many 
execution
contexts. libs / frameworks

& your code

c-runtime

process

systemd, systemv, 
appmanager, OS

hardware



Image : Jussi Kilpelainen

2. Coredumps

Image : Jussi Kilpelainen

4 Bytes of Core Memory: Arduino Module
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What do Coredumps Look Like?
Regular ELF Header

(except e_type is ET_CORE)
Page Info for the

VirtualMemoryAddresses
Notes

(Registers of Threads, etc)
Process Info

(uid, gid, state, …)
Thread Info

(state, siginfo, …)

Mapped File InfoMapped File Info

<Dumped Memory>

Describes the 
     Memory almost
like ELF-Sections
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Prerequisites
● CONFIG_COREDUMP enabled when compiling the Kernel
● Executable must be readable (cores reveal your secrets…)
● Process must have permissions to write the core

Special problems on embedded:
● You need enough space to store it
● You need enough bandwidth to transfer it
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Enable by setting limits
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/proc/sys/kernel/core_pattern

Path containing %P %u %g %s %t %c %h

PID
uid

gid signal

coresize
hostname

time of dump
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CoreDumps: Did you know?
● You can madvise memory pages to be excluded from a 

coredump
– Use madvise with MADV_DONTDUMP flag

● You can pipe coredumps to stdin of another process
– Make your corePattern start with a | character, followed by the receiving process
– Systemd coredumpctl does It |/usr/lib/systemd/systemd-coredump

● GDBs gcore can create a core of a running process
– and the process survives 
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Development: have GDB on your target!
● At the Development stage,  just have a gdb on the target
● Find a way to store the coredump
● If you get a crash producing a coredump, rejoin symbols:

– Use the elfutils bin eu-unstrip <executable> <symbols>
– Repeat for all relevant libraries you need for heap / stack

● Its a bit tedious, its worth it, if you need heap information
● If no heap is needed, there are better ways
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● A cross-gdb (from your toolchain) on your Desktop
● The exact same executable that crashed (with symbols!)
● Symbols for all relevant libraries when it crashed
● The core file
● Optionally /proc/kallsyms from the target
● Carefully feed SDK-Paths and Libs to get a stacktrace

Cross-Platform CoreDump Analysis 
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GDB-Server: A Hybrid

gdbserver

executable

cross-gdb

App
symbols

Lib
symbols

host target



Poor-Man’s SlimDump: Backward-Cpp
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By François-Xavier Bourlet, @bombela 
– The Pitch

Tired of seeing this ?
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Then Try backward-cpp :)
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Backward-cpp
● Include a header + 1 Line of initialization, done

– You might need to add some unwinding libraries for it in your Sysroot

● Symbols are necessary in build (-g), fat binaries
● Does stack unwinding in the signal handlers
● Requires access to the source code to print it
● Can be easily customized further 

 → This is great for Development!



The Sanitizers can help you as well.
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Crash output of an executable, instrumented with the gcc/clang address sanitizer



No Symbols?, Unwinding Fails?
You can still resort to: 

»Desperate-Stack-Reading«
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Printing raw stack memory, garnished with symbols
take everything with teaspoons of salt



3. Signal Handlers can act 
when its already too late.

But they are limited
– use them with care!
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They can be registered by std::signal(…)

… or POSIX sigaction(…) for a bit more elaborate infos on the signal

typedef struct {
int si_signo;
int si_code;
union sigval si_value;
int si_errno;
pid_t si_pid;
uid_t si_uid;
void *si_addr;
int si_status;
int si_band;

} siginfo_t; 
//member of sigaction

Sender
Info
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Signalhandlers / Crashhandlers look much like plain C code
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Things not allowed in the Signal Handler
● Heap allocations are forbidden, because not async-safe
● One is only permitted to execute  “safe” operations

– That is basically  everything that does not use malloc/free
– Check man signal-safety for it
– Code looks much like pure C-Code then

● Be hyper-careful of Crashes in Crash Handlers.
You have been warned :)
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Things allowed in the Signal Handler
● Start new processes (wow!)
● Obviously reading heap memory
● Send signal to self raise(SIGNAL);
● Most important for embedded: Reinstate safety in your embedded device

● Check out the KDABs QML stack trace dumper [1]. 
– Actually unsafe, because it allocates
– but worth the gamble in development, its too late anyways, right?

[1] https://github.com/KDAB/KDToolBox/tree/master/qt/qml/QmlStackTraceHelper



Watchdog-like processes can assist
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It makes sense to have Watchdogs 
out of the main execution Context 

● There exist not only crashes, but also infinite loops
– Idea: Reset an external watchdog periodically, infinite loops are detected

● It can make sense to inject SIGABRT from the outside
● A stack trace will be produced and loop analysis is possible
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The OOM(Out of Memory)-killer
● Most famous external source of an unwanted termination
● Based heuristics, kills programs to regain memory
● Stack dumps are of limited use in analysis here

– Use mallinfo() or heap-snapshots to find out the reason of OOM
– Maybe not your processes fault: write /proc/meminfo or the output of free

● Sends SIGKILL in rare cases also SIGTERM
– Use the sigaction() registration to find out if OOM-killer was the sender



In Practice:
Google Breakpad + Sentry + Yocto 



 35

General Architecture

Yocto

Email

Hardware

SymbolServer

⚡Crash

Symbols

App

Breakpad
Handler

Break-
pad

Dump
Extra
Info

App
Recipe

(changes)  handle&react
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Integrate Google Breakpad into Yocto
● Breakpad Recipes included in meta-oe/recipes-devtools

– Creates all cross-tools needed
– Creates the header-only library needed for the custom Signal Handler
– Provides a yocto .bbclass to be added to your app recipe 

● This then splits out symbols before app-binary is stripped by yocto

● Extras can be added in your individual app recipe

Symbols
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myapp.bb: I extend the breakpad step to have 2 executables and do the upload on every build

breakpad.bbclass contains this, always executed for a class inheriting breakpad

… now every yoctobuild uploads the symbols !



 38

Example for file libQt5Core.so :  It is important, that debug info is present

For the other libs, I use the yocto-built SDK, it contains split debug symbols in .debug folders

… from there it is uploaded like all symbs with sentry-cli
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More Infos on Google Breakpad
● Uses Minidumps

– Originally envisioned by Microsoft 
– Similar to slim cores, but way smaller (around 20KiB)
– Cross-platform (unix cores don’t work on Windows, settled on minidump)
– Splitting command: dump_symbs executable > /path/to/destination.symbs

● Minidump comes with some useful tools 
– minidump_stackwalk: Re-Combine Minidump+App+Symbols  get a stack→

– minidump-2-core: Converts dump to gdb-readable format
– and more…
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Integrate Breakpad in your Code
● Breakpads library and headers are included in the new SDK

when using it in any of your recipes
● Only 2 extra lines in main() are necessary to register
● Of course you can do more in your custom Handler

App

Breakpad
Handler

libbreakpad_client.a
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Register the handler in your main(), pass any variables to be used

Include Breakpad Header,
Handle crashes and write extra information

Register Breakpad
Handler

Write Extra 
Information
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Sending the Information
● Let a daemon check the 

crash folder for crashes
– Not known if device has connectivity
– Daemon checks periodically if a 

minidump is available 
– If allowed in the User-settings, Info 

is uploaded to the sentry server

● For now, no logs are 
uploaded, maybe in the 
future… Hardware

App

Breakpad
Handler

Break-
pad

Dump

Extra
Info

⚡

Daemon

Crash
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Snip from the Crashdaemon,
A file watcher looks for crash data and uploads it, when possible
Extra tag info is garnished for sentry
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Result: Sentry collects the Crashes

//Categorized
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The Result(II)

//Symbols available

//Extra Information //Breakpad Information

//Symbols not available
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Mail 
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More about Sentry
● Clustering of Crashes is configurable
● Supports many DumpFormats

– Not in this talk: Sentry Native Dumps

● Supports external Symbol Servers 
– Some Companies (Microsoft, Autodesk, …) offer symbols even for their 

closed-source products online

● Self-hosted, or ~25€/mo 



GDPR?
<Im not a lawyer>, but… ⚖️
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On uploading crash(=user)data
● We run it for development/staging/testing only
● If production is involved, plan to make it opt-in for users
● Practically, stack information might contain all information

If dumps are anonymous and your users know that telemetry is 
recorded and for what purpose the data is collected, one 
should be fine.

… </but I’m not a lawyer>



Overall, there is still much one can 
do, when its already too late

I showed you classic ways in theory
and one way I like in practice

Invest in learning from your crashes
—it pays off plenty!

#1

#2

#3
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Pointers and Sources
● [Strip and unstrip Symbols]

https://sourceware.org/elfutils/
● [4Byte Ferrite Core Memory for Arduino]

https://www.tindie.com/products/kilpelaj/core-
memory-shield-for-arduino/

● [Anatomy of a coredump]
https://www.gabriel.urdhr.fr/2015/05/29/core-
file/

● [Prerequisits for coredumps]
https://man7.org/linux/man-pages/man5/core.5.
html

● [Stacktraces with Backward-cpp]
https://github.com/bombela/backward-cpp

● [Stacktraces from the Address the Sanitizer]
https://clang.llvm.org/docs/AddressSanitizer.html

● [Handlers std::signal(…)]
https://en.cppreference.com/w/cpp/utility/program/
signal 

● [Handlers Sigaction]
https://pubs.opengroup.org/onlinepubs/9699919799/fu
nctions/sigaction.html 

● [Infos on OOM killer]
https://docs.memset.com/other/linux-s-oom-process-
killer 

● [Breakpad Yocto Recipe]
https://git.congatec.com/yocto/meta-openembedded/c
ommit/a4657e4395e0714198c34f02c54043edb8baeafb 

● [Mozilla Minidump Tools]
https://github.com/mozilla-services/minidump-
stackwalk 

● [Sentry, Sentry-CLI]
https://sentry.io
https://docs.sentry.io/product/cli/ 
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End Of Talk!

I will answer all questions, AMA!

Christoph Sterz 
christoph.sterz@kdab.com
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