
 1

What to Do When It is 
Already Too Late ? 

Crashdumps for Embedded Systems

Christoph Sterz 
christoph.sterz@kdab.com



 ❤️ Embrace the Fail 
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Content
● The nature of a crash and where to intercept
● Working with core dumps
● Signal handlers and watchdogs
● My serving suggestion:

– Yocto, and…
– Google Breakpad, and…
– Sentry

● On collecting crashdumps in production
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Scope of Crashes in this Talk
● Crashes mostly in C/C++
● On Embedded Linux
● Crashes induced from the inside and from the outside

● No Kernelpanics, etc.
● SW-Devs’ Assumption #1:  Hardware just works 
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Crashes in Development And Production

● Dev Environment on 
Embedded Devices
– All Symbs / (Remote) GDBs 
– Fullsize dumps
– EvalBoards
– Small Testing Surface

● In Production
– Slim Images
– Slim Dumps  / Reduced Bandwidth 
– (Often more limited) production 

hardware, no storage
– Large Testing Surface

breakpad.bbclass contains this, always executed for a class inheriting breakpad
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Crashes in Development And Production

● Dev Environment on 
Embedded Devices
– All Symbs / (Remote) GDBs 
– Fullsize dumps
– EvalBoards
– Small Testing Surface

● In Production
– Slim Images
– Slim Dumps  / Reduced Bandwidth 
– (Often more limited) production 

hardware, no storage
– Large Testing Surface

breakpad.bbclass contains this, always executed for a class inheriting breakpad

Boils down to

storage <vs.> no storage
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Crashdumps and Symbols
● Symbols are needed: 

– To make addresses readable for 
humans 

– To reconstruct the contents of the 
Stack

– To infer Line Numbers 

● You will get symbols with -g 
● Symbols are independent of 

optimization (-g, -O2)
● Symbols are huge 😅
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Code is embedded
in many 
execution
contexts.

libs / frameworks
& your code

c-runtime

process

systemd, systemv, 
appmanager, OS

hardware



Image : Jussi Kilpelainen

Coredumps

Image : Jussi Kilpelainen

4 Bytes of Core Memory : Arduino Module
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What do Coredumps Look Like?
● TODO
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Prerequisites
● CONFIG_COREDUMP enabled in the Kernel
● Executable must be readable (guess why?)
● Process must have permissions to write the core

● You need enough space to store it
● You need enough Bandwidth to transfer it
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Enable by setting limits
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/proc/sys/kernel/core_pattern

Path containing %P %u %g %s %t %c %h

PID
uid

gid signal

coresize
hostname

time of dump
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CoreDumps: Did you know?
● You can madvise memorypages to be excluded from 

Coredump
– Use madvise with MADV_DONTDUMP flag

● You can pipe coredumps to stdin of another process
– Make your corePattern start with a | character, followed by the receiving process
– Systemd coredumpctl does It |/usr/lib/systemd/systemd-coredump

● GDBs gcore can create a core of a running process
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Development: have GDB on your target!
● At the Development Stage,  just have a gdb on the target
● Find a way to store the coredump
● If you get a Crash producing a coredump, rejoin symbols:

– Use the elfutils bin eu-unstrip <executable> <symbols>
– Repeat for all relevant libraries you need for heap / stack

● Its a bit tedious, its worth it, if you need heap information
● If no heap is needed, there are better ways
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You need it all for Cross-Platform CoreDumps 😬
● A cross-toolchain GDB on your Desktop
● The exact same executable that crashed (/w symbols)
● Symbols for all relevant libs when it crashed
● The core file
● Optionally /proc/kallsyms from the target

● Carefully feed SDK-Paths and Libs and see if you get a stack
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GDB-Server: A Hybrid

gdbserver

executable

cross-gdb

App
symbols

Lib
symbols

host target



Poor-Man’s SlimDump: Backward-Cpp
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By François-Xavier Bourlet, @bombela 
– The Pitch

Tired of seeing this ?
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Then Try this :)
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BackwardCpp
● This is in the Development-Situation category
● Include a header + 1 Line of initialization
● Symbols are necessary in build (-g), fat binaries
● Does stack unwinding in the signal handlers
● Requires the source code to print it
● Can be heavily customized 

 → This is great for Development!



The Sanitizers can help you as well.
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Crash output of an executable, instrumented with the gcc/clang address sanitizer



No Symbols?, Unwinding Fails?
You can still resort to: 

»Desperate-Stack-Reading«
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Printing raw stack memory, garnished with symbols
take everything with teaspoons of salt



Signal Handlers can act 
when its already too late

But they are limited
– use them with care!
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OS sends signal

Program

Signalhandler

Linux kill / OOMKiller
🔪

Signal proc mask
🎭

Invalid Memory Access
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Things not allowed in the SignalHandler
● Heap allocations are forbidden from this point on
● One is only permitted to execute  “safe” operations

– That is basically  everything that does not allocate
– Check man signal-safety for it
– Code looks much like pure C-Code then

● Be hyper-careful of Crashes in Crash Handlers.
You have been warned :)
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Things allowed in the SignalHandler
● Start new processes (wow!)
● Obviously reading heap memory
● Again, everything that man signal-safety allows you to do
● Send signal to self
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Signalhandlers / Crashhandlers look much like plain C Code
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 🕶️ Cool Things possible in the Signal Handler 

● Check out the KDABs QML stack trace dumper[1]. 
– Actually unsafe, because allocates
– but worth the gamble, its too late anyways, right?

● TODO More

[1]https://github.com/KDAB/KDToolBox/tree/master/qt/qml/QmlStackTraceHelper



Watchdog-like processes can assist
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It makes sense to have Watchdogs 
out of the main execution Context 

● There is not only Crashes, but also infinite loops
– Idea: Reset the watchdog periodically, such that infinite loops are detected

● It can make a lot of sense to inject SIGSEGV & friends from 
the outside

● A stacktrace will still be produced and Analysis is possible
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The OOM killer

● Most famous external source of an unwanted termination
● Stackdumps are of limited use in Analysis here
● Sends SIGKILL in rare cases also SIGTERM

– Here, app dumps are a bit less interesting
– Collect specificly the system-wide memory situation in this case



In Practice:
Google Breakpad + Sentry + Yocto 
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General Architecture
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Integrate Google Breakpad into Yocto
● Breakpad Recipes included in meta-oe/recipes-devtools

– Creates all cross-tools needed
– Creates the header-only library needed for the custom Signal Handler
– Provides a yocto bbclass to be added to your app recipe 

● This then splits out symbols before app-binary is stripped by yocto

● Extras can be added in your individual app recipe

Symbols
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myapp.bb: I extend the breakpad step to have 2 executables and do the upload on every build

breakpad.bbclass contains this, always executed for a class inheriting breakpad

… now every yoctobuild uploads the symbols !
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Example for file libQt5Core.so :  It is important, that debug info is present

For the other libs, I use the yocto-built SDK, it contains split debug symbols in .debug folders

… from there it is uploaded like all symbs with sentry-cli
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More Infos on Googles Breakpad
● Uses Minidumps

– Originally envisioned by Microsoft 
– Similar to slim cores, but way smaller (around 20KiB)
– Cross-platform (unix cores don’t work on Windows, settled on minidump)
– Splitting command: dump_symbs executable > /path/to/destination.symbs

● Minidump comes with some useful tools 
– minidump_stackwalk: Re-Combine Minidump+App+Symbols  get a stack→

– minidump-2-core: Converts dump to gdb-readable format
– and more…
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Integrate Breakpad in your Code
● Breakpads library and headers are included in the new SDK

when using it in any of your recipes
● Only 2 extra lines in main() are necessary to register
● Of course you can do more in your custom Handler

App

Breakpad
Handler

libbreakpad_client.a
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Register the handler in your main(), pass any variables to be used

Include Breakpad Header,
Handle crashes and write extra information

Register Breakpad
Handler

Write Extra 
Information
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Sending the Information
● Let a daemon check the 

crash folder for crashes
– Not known if device has connectivity
– Daemon checks periodically if a 

minidump is available 
– If allowed in the User-settings, Info 

is uploaded to the sentry server

● For now, no logs are 
uploaded, maybe in the 
future… Hardware

App

Breakpad
Handler

Break-
pad

Dump

Extra
Info

⚡

Daemon

Crash
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Snip from the Crashdaemon,
A file watcher looks for crash data and uploads it, when possible
Extra tag info is garnished for sentry
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The Result

//Categorized
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The Result(II)

//Symbols available

//Extra Information //Breakpad Information

//Symbols not available
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Mail 💌
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More about sentry
● FOSS Dump Collector
● Sorts Crashes by Stack, configurable
● Supports many DumpFormats
● Suppports external Symbol Servers 

● ~30€/mo or self hosted



GDPR?
<Im not a lawyer>, but… ⚖️
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On uploading crash(=user)data
● We run it for development / staging / testing only
● If Production is involed, make it opt-In for users
● Practically, stack information might contain all information

● If dumps are anonymized and users know for what purpose 
the data is collected, one should be fine

… </but Im not a lawyer>



Overall there is still much to do, 
when its already too late

I showed you classic ways in therory
and one way I like in practice

Invest in learning from your crashes
—it is worth it.

#1

#2

#3



End Of Talk!

I will answer all questions, AMA!
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