
 1

What to Do When It is
Already Too Late ?

Crashdumps for Embedded Systems

Christoph Sterz
christoph.sterz@kdab.com

 ❤️ Embrace the Fail

 3

Content
● The nature of a crash and where to intercept
● Working with core dumps
● Signal handlers and watchdogs
● My serving suggestion:

– Yocto, and…
– Google Breakpad, and…
– Sentry

● On collecting crashdumps in production

 4

Scope of Crashes in this Talk
● Crashes mostly in C/C++
● On Embedded Linux
● Crashes induced from the inside and from the outside

● No Kernelpanics, etc.
● SW-Devs’ Assumption #1: Hardware just works

 5

Crashes in Development And Production

● Dev Environment on
Embedded Devices
– All Symbs / (Remote) GDBs
– Fullsize dumps
– EvalBoards
– Small Testing Surface

● In Production
– Slim Images
– Slim Dumps / Reduced Bandwidth
– (Often more limited) production

hardware, no storage
– Large Testing Surface

breakpad.bbclass contains this, always executed for a class inheriting breakpad

 6

Crashes in Development And Production

● Dev Environment on
Embedded Devices
– All Symbs / (Remote) GDBs
– Fullsize dumps
– EvalBoards
– Small Testing Surface

● In Production
– Slim Images
– Slim Dumps / Reduced Bandwidth
– (Often more limited) production

hardware, no storage
– Large Testing Surface

breakpad.bbclass contains this, always executed for a class inheriting breakpad

Boils down to

storage <vs.> no storage

 7

Crashdumps and Symbols
● Symbols are needed:

– To make addresses readable for
humans

– To reconstruct the contents of the
Stack

– To infer Line Numbers

● You will get symbols with -g
● Symbols are independent of

optimization (-g, -O2)
● Symbols are huge 😅

App with
Symbols

AppApp

Symbols

stripping

App with
Symbols

AppApp

Symbols

stripping

AppApp

Symbols

App with
Symbols

App

Symbols

unstripping

Symbols

Memory
Dump

#3 foo(…)
#2 bar(…)
#1 baz(…)
#0 fail(...)

Stacktrace
 (stack)

unwinding

 8

v

v

Code is embedded
in many
execution
contexts.

libs / frameworks
& your code

c-runtime

process

systemd, systemv,
appmanager, OS

hardware

Image : Jussi Kilpelainen

Coredumps

Image : Jussi Kilpelainen

4 Bytes of Core Memory : Arduino Module

 10

What do Coredumps Look Like?
● TODO

 11

Prerequisites
● CONFIG_COREDUMP enabled in the Kernel
● Executable must be readable (guess why?)
● Process must have permissions to write the core

● You need enough space to store it
● You need enough Bandwidth to transfer it

 12

Enable by setting limits

 13

/proc/sys/kernel/core_pattern

Path containing %P %u %g %s %t %c %h

PID
uid

gid signal

coresize
hostname

time of dump

 14

CoreDumps: Did you know?
● You can madvise memorypages to be excluded from

Coredump
– Use madvise with MADV_DONTDUMP flag

● You can pipe coredumps to stdin of another process
– Make your corePattern start with a | character, followed by the receiving process
– Systemd coredumpctl does It |/usr/lib/systemd/systemd-coredump

● GDBs gcore can create a core of a running process

 15

Development: have GDB on your target!
● At the Development Stage, just have a gdb on the target
● Find a way to store the coredump
● If you get a Crash producing a coredump, rejoin symbols:

– Use the elfutils bin eu-unstrip <executable> <symbols>
– Repeat for all relevant libraries you need for heap / stack

● Its a bit tedious, its worth it, if you need heap information
● If no heap is needed, there are better ways

 16

You need it all for Cross-Platform CoreDumps 😬
● A cross-toolchain GDB on your Desktop
● The exact same executable that crashed (/w symbols)
● Symbols for all relevant libs when it crashed
● The core file
● Optionally /proc/kallsyms from the target

● Carefully feed SDK-Paths and Libs and see if you get a stack

 17

GDB-Server: A Hybrid

gdbserver

executable

cross-gdb

App
symbols

Lib
symbols

host target

Poor-Man’s SlimDump: Backward-Cpp

 19

By François-Xavier Bourlet, @bombela
– The Pitch

Tired of seeing this ?

 20

Then Try this :)

 21

BackwardCpp
● This is in the Development-Situation category
● Include a header + 1 Line of initialization
● Symbols are necessary in build (-g), fat binaries
● Does stack unwinding in the signal handlers
● Requires the source code to print it
● Can be heavily customized

 → This is great for Development!

The Sanitizers can help you as well.

 23

Crash output of an executable, instrumented with the gcc/clang address sanitizer

No Symbols?, Unwinding Fails?
You can still resort to:

»Desperate-Stack-Reading«

 25

Printing raw stack memory, garnished with symbols
take everything with teaspoons of salt

Signal Handlers can act
when its already too late

But they are limited
– use them with care!

 27

OS sends signal

Program

Signalhandler

Linux kill / OOMKiller
🔪

Signal proc mask
🎭

Invalid Memory Access

 28

Things not allowed in the SignalHandler
● Heap allocations are forbidden from this point on
● One is only permitted to execute “safe” operations

– That is basically everything that does not allocate
– Check man signal-safety for it
– Code looks much like pure C-Code then

● Be hyper-careful of Crashes in Crash Handlers.
You have been warned :)

 29

Things allowed in the SignalHandler
● Start new processes (wow!)
● Obviously reading heap memory
● Again, everything that man signal-safety allows you to do
● Send signal to self

 30

Signalhandlers / Crashhandlers look much like plain C Code

 31

 🕶️ Cool Things possible in the Signal Handler

● Check out the KDABs QML stack trace dumper[1].
– Actually unsafe, because allocates
– but worth the gamble, its too late anyways, right?

● TODO More

[1]https://github.com/KDAB/KDToolBox/tree/master/qt/qml/QmlStackTraceHelper

Watchdog-like processes can assist

 33

It makes sense to have Watchdogs
out of the main execution Context

● There is not only Crashes, but also infinite loops
– Idea: Reset the watchdog periodically, such that infinite loops are detected

● It can make a lot of sense to inject SIGSEGV & friends from
the outside

● A stacktrace will still be produced and Analysis is possible

 34

The OOM killer

● Most famous external source of an unwanted termination
● Stackdumps are of limited use in Analysis here
● Sends SIGKILL in rare cases also SIGTERM

– Here, app dumps are a bit less interesting
– Collect specificly the system-wide memory situation in this case

In Practice:
Google Breakpad + Sentry + Yocto

 36

General Architecture

Email

Hardware

SymbolServer

⚡Crash

Symbols

App

Breakpad
Handler

Break-
pad

Dump
Extra
Info

App
Recipe

(changes) handle&react

 37

Integrate Google Breakpad into Yocto
● Breakpad Recipes included in meta-oe/recipes-devtools

– Creates all cross-tools needed
– Creates the header-only library needed for the custom Signal Handler
– Provides a yocto bbclass to be added to your app recipe

● This then splits out symbols before app-binary is stripped by yocto

● Extras can be added in your individual app recipe

Symbols

 38

myapp.bb: I extend the breakpad step to have 2 executables and do the upload on every build

breakpad.bbclass contains this, always executed for a class inheriting breakpad

… now every yoctobuild uploads the symbols !

 39

Example for file libQt5Core.so : It is important, that debug info is present

For the other libs, I use the yocto-built SDK, it contains split debug symbols in .debug folders

… from there it is uploaded like all symbs with sentry-cli

 40

More Infos on Googles Breakpad
● Uses Minidumps

– Originally envisioned by Microsoft
– Similar to slim cores, but way smaller (around 20KiB)
– Cross-platform (unix cores don’t work on Windows, settled on minidump)
– Splitting command: dump_symbs executable > /path/to/destination.symbs

● Minidump comes with some useful tools
– minidump_stackwalk: Re-Combine Minidump+App+Symbols get a stack→

– minidump-2-core: Converts dump to gdb-readable format
– and more…

 41

Integrate Breakpad in your Code
● Breakpads library and headers are included in the new SDK

when using it in any of your recipes
● Only 2 extra lines in main() are necessary to register
● Of course you can do more in your custom Handler

App

Breakpad
Handler

libbreakpad_client.a

 42

Register the handler in your main(), pass any variables to be used

Include Breakpad Header,
Handle crashes and write extra information

Register Breakpad
Handler

Write Extra
Information

 43

Sending the Information
● Let a daemon check the

crash folder for crashes
– Not known if device has connectivity
– Daemon checks periodically if a

minidump is available
– If allowed in the User-settings, Info

is uploaded to the sentry server

● For now, no logs are
uploaded, maybe in the
future… Hardware

App

Breakpad
Handler

Break-
pad

Dump

Extra
Info

⚡

Daemon

Crash

 44

Snip from the Crashdaemon,
A file watcher looks for crash data and uploads it, when possible
Extra tag info is garnished for sentry

 45

The Result

//Categorized

 46

The Result(II)

//Symbols available

//Extra Information //Breakpad Information

//Symbols not available

 47

Mail 💌

 48

More about sentry
● FOSS Dump Collector
● Sorts Crashes by Stack, configurable
● Supports many DumpFormats
● Suppports external Symbol Servers

● ~30€/mo or self hosted

GDPR?
<Im not a lawyer>, but… ⚖️

 50

On uploading crash(=user)data
● We run it for development / staging / testing only
● If Production is involed, make it opt-In for users
● Practically, stack information might contain all information

● If dumps are anonymized and users know for what purpose
the data is collected, one should be fine

… </but Im not a lawyer>

Overall there is still much to do,
when its already too late

I showed you classic ways in therory
and one way I like in practice

Invest in learning from your crashes
—it is worth it.

#1

#2

#3

End Of Talk!

I will answer all questions, AMA!

	Slide 1
	Section slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

